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In this supplementary note, we describe in more detail our approach to constructing a factoriza-
tion Y = AX € R™*P of the given observation into a sparsifying basis A € R™*™ and a matrix
X € R™*P of sparse coefficients. We formulate this problem as a constrained optimization which
seeks a basis A which best sparsifies the observations, subject to the data constraint Y = AX. We
also impose the additional constraint that each of the columns of A have unit £2-norm, to eliminate
scale ambiguities between the two unknowns A, X. This leaves us with a manifold of possible
solution pairs

M={(A,X)|Y = AX, |Ae;|a =1V i} CR™"™ x R"*P, (0.1)

Motivated by the success of ¢!-minimization in recovering signals which are sparse in a known
basis [BDE0S], as well as emerging theoretical results on the good properties of £!-minimization for
sparse matrix factorization [GS10], relax the search for the best sparsifying basis A to the following
optimization problem:

minimize || X||; subject to (A, X) e M. (0.2)

This problem asks that we minimize a convex function, subject to a nonlinear (nonconvex) constraint.
In the worst case, this is a very difficult problem. However, surprisingly encouraging empirical results
suggest that there are large classes of problems that actually can be solved globally via this approach.
These problems correspond to instances where the input Y is indeed generated by a sufficiently sparse
X, and the dimension is sufficiently large (say, m > 20 for a 3-sparse X ). Figure 1 (right) shows one
example of this behavior: for well-structured simulated problems, locally minimizing the ¢!-norm
correctly recovers the globally optimal solution (A, X) with high probability. We will report on this
phenomenon more extensively in a separate, forthcoming work.

However, this still leaves us with a very challenging optimization problem: the number of variables
is very large — potentially in the hundreds of thousands or even millions — and the objective function is
nonsmooth. Our approach to this problem is a very simple and natural one, which has been studied
in the optimization literature at least since the 1970’s, as a nonsmooth Gauss-Newton method
[Cro78, JO80]. This approach repeatedly linearizes the constraint x = (A, X) € M, replacing M
with its tangent space at the current iterate. This yields a simple iteration:!

op = argmin{|X + Ax| [ (A4, Ax) € Te M, [|A4lF + |Ax][F <nx}  (0.3)
Tpt1 = Pmlzr + 0k, (04

1We have identified T, M with a subspace of R™*™ x R™*P in the natural way.
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Figure 1: Left: Illustration of our method. At each iteration k, our algorithm linearizes the constraint
manifold M, and finds the perturbations dx = (A 4, A x) within this linearized space that make the objective
|X 4+ Ax||1 as small as possible. This minimizing point, € + 0%, is then projected back onto M to yield
the next iterate, xx4+1. Right: Illustration of correct recovery. We generate synthetic examples
with randomly chosen A € R™*™, for varying m = 10,20,...,50, and X € R™*? of varying sparsity
k=1,3,...,9. Recovery is considered correct if the relative errors in A and X are both smaller than 107°.
The figure plots the fraction of correct recoveries over 10 independent trials - white corresponds to perfect
recovery in all trials. We observe that when the dimension is large enough, the algorithm indeed correctly
recovers (A, X) with high probability.

where Py : R™*™ x R™*P ig a projection operator onto M. The basic idea of this approach is
illustrated in Figure 1. This algorithm is known to converge quadratically in the neighborhood of
any strict local minimum [JO80]. We describe the two key steps of the algorithm in more details
below.

Linearized Subproblem: Solving the linearized subproblem (0.3) amounts to solving a large,
equality-constrained ¢'-norm minimization problem. It is not difficult to show that the tangent
space T M at a given point = (A, X) can be expressed as the set of pairs (A 4, Ax) satisfying

AAx + A, X =0, <A6iAA, 6i> =0, Vi. (05)
Hence, in more concrete form, the subproblem that we need to solve at each step is
minimize ||X + Ax||1 subject to AAx + A4 X =0, (0.6)
<A€iAA, €i> =0V ’i7
AL+ [AxE <™.
For this purpose, we employ an Augmented Lagrange Multiplier (ALM) algorithm [Ber82], which
was introduced into the literature on ¢!-minimization by Yin, Osher and collaborators [YOGDOS],
and studied by those authors as a Bregman iterative algorithm. To describe this algorithm more

fully, it is helpful to introduce a linear operator ¥ : R™*" x R™"*P — R™*P x R™ corresponding to
the above tangent space constraint:

\IJ(AA, Ax) = (AAX + A X, dlag[A*AA]) (07)



Introduce the convex function J : R™*" x R™"*P via

IX +Axll, [Ax|E+[AAlE <n?

0, else. (0-8)

J(AaAx) = {
The Bregman iterative approach solves a sequence of convex programs in unknowns h = (H 4, H x),
with varying inputs r; = (R4, Rx), starting from r¢ = (0, 0):

B = agmin J(h) + AJU(R) 5] (0.9)

and updating the residual via ;41 = 7, + U(h;41) — ¥(h;). This sequence of iterates converges to
the solution to (0.6). Each of these problems (0.9) is solved via a simple soft-thresholding algorithm,
which repeatedly sets

. A
Zip1 = argmin J(z) + %Hz - BY(z; —1;)]. (0.10)

This problem is a variant of shrinkage or soft-thresholding that arises in ¢!-minimization. It can be
solved via an efficient projection algorithm similar to the one given in [MBPS10].

Projection: We project a given pair A, X onto M as follows. We first scale the columns of A
to obtain a matriX~A’ whose columns have unit ¢ norm. We then select X’ to be the matrix X
satisfying Y = A’ X which closest to X in Frobenius norm. In notation:

X' =X+ (A (Y - AX). (0.11)

We then set P(A, X) = (A", X').

It should be noted that this operator does not find a pair (A’, X') that is closest to (A, X) in
terms of the ¢2 norm ||(A, X)|| = (||A||% + || X||%)"/?. Finding a closest point on M in terms of this
(rather natural) norm would require solving a separate nonconvex optimization problem. Rather,
our operator P(A, X) can be viewed as the limit (as ¢ — oo0) of projection operators with respect
to weighted ¢2 norms ||(A, X)|| = (t|A||% + || X||%)*/2. This substitution leaves us with a simple,
tractable operator P, and does not affect the qualitative behavior of the algorithm.

Initialization: We find it surprisingly effective to simply start the algorithm from a random
initialization. We choose A( to be a matrix whose columns are independent random samples from
the uniform distribution on the sphere S™~!. We then simply set X = AZ[)Y.
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