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ABSTRACT

Wind turbines have become significant collision risks to endangered
birds. To estimate the impact of bird strikes and take action against
them, we need an automated bird monitoring system that detects and
categorizes bird species. Towards this goal, we constructed an im-
age dataset as a benchmark for ecological investigations of birds.
The dataset consists of time-series images of a scene in a wind farm,
bounding boxes around the aerial objects in the images, and species
annotations. Bird experts searched for and annotated the images of
birds, and thus, even birds that appeared to be very small in the whole
image could be specified in detail. In total, 32,000 birds are anno-
tated. In collecting the images, we had to monitor birds in the dis-
tance to cover enough area, but even with a telephoto setup, the av-
erage size of the birds in the image is around 25 pixels. This means
we need a means of recognition that works on very low-resolution
images. As an application of the dataset, we conducted experiments
in two-class categorization (birds and non-birds), to serve as basis
for detection and further categorization. We found that the dataset is
a challenging recognition task because of its low resolution and hard
negative samples.

Index Terms— Image recognition, object detection, image
dataset, ecological conservation

1. INTRODUCTION
Wind farms are becoming more widespread as a result of the re-
cent rise in demand for clean energy. However, birds often strike the
blades of wind turbines, which is of particular concern when it comes
to endangered species. To avoid such strikes, wind farms can be built
in regions inhabited by fewer birds, or their turbines can be made to
decelerate or stop when birds approach. Moreover, to estimate the
risk of a bird strike, we need to detect birds around the wind farm and
identify their species, numbers, and flying routes. However, as man-
ual investigation is expensive and potentially inaccurate, automatic
detection and categorization of birds would be preferable.

The development of an automated bird monitoring system poses
novel problems in the field of image processing and computer vi-
sion, i.e., detection and fine-grained categorization of small objects
in a large image. This is due to two reasons: First, the system needs
to have a wide monitoring area, since it has to notice the approach
of birds well before they collide with the wind turbine, and the ob-
servation area has to be big enough to ascertain the distribution of
birds. Second, it needs to categorize bird species in a fine-grained
way, since the ability to discriminate between an endangered species
and visually similar non-endangered ones is important to assess the
severity of their situation.

Towards the development of an automated system, we have con-
structed a wild-bird dataset and evaluated it using basic object detec-
tion methods. The dataset is designed to fulfill the requirements of
automatic bird monitoring, namely, precise and fine-grained moni-
toring of a wide area. The dataset consists of sequences of images

Fig. 1. A typical scene captured with our telephoto setup and stored
in the database. Although the resolution of the images is as large as
5616 × 3744 pixels, the birds look small.

around a wind farm, in which each bird is annotated by experts with a
bounding box and a tree-structured label of species, e.g., bird - hawk
- black kite. Over 32,000 birds and 4,900 non-birds are annotated.
Thus, it offers a means of training and evaluating image recognition
algorithms that was derived from very natural circumstances.

Ours is the first practical dataset for ecological investigations
which monitor wide area of natural environments, and we expect
that it will be useful for detecting birds or as a benchmark for fine-
grained object categorization. The average size of birds in the dataset
is around 25 pixels, whereas the size of the scene is larger than a 4K
image. This means we need a detection algorithm that can work with
very low resolution images. Furthermore, the dataset includes in-
sects, helicopters and airplanes, which are hard to differentiate from
birds. It will be a challenge to develop an algorithm that can handle
such a difficult categorization. To evaluate the dataset, we performed
a two-class categorization (birds and non-birds), to serve as a basis
for understanding the characteristics of the low-resolution detection
problem. We believe our findings can be applied to other problems
such as those in wide area surveillance. Our dataset is now available
at http://bird.nae-lab.org/dataset.html.

Below, we briefly review some of the related work. It is well
known that the resolution of an image affects recognition perfor-
mance. In detection benchmarks on other objects, it has been shown
that smaller objects are more difficult to detect [1]. Classification
is also difficult with low-resolution images. Scene classification
and generic object classification at low resolution have already been
tested on famous benchmarks such as Tiny Images [2] and CIFAR-
100 [3]. However, it is not clear how to perform fine-grained classi-
fication at low resolution in a task with subordinated classes such as
bird species. Although studies on fine-grained classification of birds
with rich image datasets and rich models are ongoing [4, 5], moni-
toring objects over a wide area will require different algorithms, as
this paper will show. Thus, we believe that our dataset will be a
useful benchmark for low-resolution detection and classification.



Despite the recent development of high-performance detection
methods including efficient features and powerful classifiers, the
number of studies focusing on wild bird detection is small. Some
trials on bird detection have been based on anomaly detection by
segmentation [6] or background subtraction [7]. The methods
therein succeeded at detecting birds; however, they would misrecog-
nize other objects such as wind turbines, insects, or trees appearing
in the scenes and, hence, are impractical for natural environments.
One of the few exceptions is the method of Qing et al. [8], wherein
a boosted HOG-LBP was used on a dataset of 1,000 bird images.
Moreover, the existing datasets that include bird images are insuf-
ficient for our purposes of detecting flying birds at a distance; for
instance, ImageNet [9], Caltech-UCSD Birds 200 [4] and Birdsnap
[5] mainly contain images taken by cameras set close to the birds
and contain no time-series sequences. Thus, we believe our dataset
would be useful for evaluating novel bird recognition methods.

2. CONSTRUCTION OF THE DATASET
2.1. Image Capture
We designed a camera setup for capturing birds in the distance. The
setup is able to capture a bird with a one-meter wing span 580 meters
away that would cover an area of 20 pixels in the image, by taking
into account the distance between the cameras location and the wind
turbine. Specifically, we used a digital still camera (Canon EOS
Mark II 5D) controlled by a laptop and equipped with a telephoto
lens (Canon EF70-200mm F4L USM). The resolution of the sensor
is 5616 × 3744 pixels, the focal length of the lens is set to 70 mm,
and the field of view is 27◦ × 19◦.

The images were recorded near a wind turbine for three days.
The capture system took a picture every two seconds for seven hours
from 9:00 to 16:00. We obtained 10,814 images per day, 32,442
images in total. The frame rate was only 0.5 fps, because of the large
data size and data transfer speed. Figure 1 shows examples of the
captured images. An example of a bird’s appearance is also shown.
Image variances other than birds include movements of clouds, the
spinning blades of the wind turbine, shaking of the bushes by the
wind, and illumination changes. Such variances pose a challenge
when we try to detect birds from image differences.

2.2. Labeling
Each bird in the dataset is enclosed by a bounding box labeled with
its species by experts. The labeling format is similar to those of other
detection datasets such as the Caltech Pedestrian Detection Bench-
mark [10], which includes bounding boxes on time-series images. In
addition, ours has fine-grained category annotations on each bound-
ing box. Negative samples of other flying objects such as planes and
bugs are also labeled.

For annotating the kind of bird, we designed a tree-structured list
of categories so that an expert can annotate the bounding box with
labels consisting of the names listed in the tree. The names of the
kinds of birds in the list were selected on the basis of the results of a
preparatory field survey. The granularity of the label can be selected
depending on how clear the image of the bird is. For example, when
a black kite appears, we may categorize it, depending on clarity, as
a black kite, a kind of hawk, as a bird, or as an unclear flying object.
These options become the nodes of the tree, and the depth of the tree
corresponds to the level of detail. We made the list updatable, so that
when an expert finds a bird that is not listed, he or she can add it to
the list.

Besides birds, other flying objects, such as airplanes, heli-
copters, insects, and fallen leaves are also recorded. In so doing,

Fig. 2. The interface for labeling. Bird experts used this interface
to check the images, find birds, create their bounding boxes, and
annotate the boxes.

these objects can be distinguished from birds that might have been
missed by the experts. Non-bird images can also be used as nega-
tive samples for machine learning. Objects that are too ambiguous
for experts to distinguish are also recorded and labeled. Thus, the
dataset contains three types of object: birds, non-birds, and unclear
flying objects.

Manually labeling sequential images of the dataset faces several
issues. First, manual labeling is time consuming, since the images
number as many as 32,442. To efficiently process the data, we de-
veloped a user interface, a screenshot of which is shown in Figure 2.
It enables us to check images sequentially and label a bird with two
actions, i.e. by making a bounding box by dragging a mouse and
selecting a category from the list. The user’s actual procedure is as
follows: a user goes through a sequence frame by frame and checks
if there is any flying object. When a flying object is found, he or
she inputs the bounding box and selects the category from the given
list, or else types in the category if it is not listed. The procedure is
iterated until the end of the sequence.

Second, it is often difficult for non-experts to confirm an image
to be of a bird, because of their small size in the images. We thus
requested dozens of members of a wild bird society to inspect the
images and input the data. Their efforts ensured that the labeling is
precise and fine-grained.

Third, due to the large size of the images (5616 by 3744 pixels),
we cannot display its full size on an ordinary display. Therefore,
we divided the original image into 30 (6 by 5) parts. One segment
was assigned to a user, who then went through a one-day sequence
of it (a total of 10,814 images). Birds that are on the boundaries
of segments may be missed easily. To stop this from happening,
we asked the users to check the images twice, and we divided the
images differently in each instance. In the first check, the images
were divided into 30 (6 by 5) segments. In the second check, we
shifted the dividing lines by half a segment.

2.3. Dataset statistics and Image Examples
The dataset contains 32,973 bird images, each of which is specified
by a bounding box annotated with its category whenever identified.
It also contains 4,911 non-birds, and 1,907 unclear flying objects.

Figure 3 shows the categories and their proportions for each day.
Hawks are the most frequent, with crows being second; 30% and
10% of the overall observations were of hawks and crows, respec-
tively. The percentage of unspecified birds is about 40%. Other
birds include swallows, sparrows, meadow buntings, and so forth.
Table 1 lists the numbers of appearances of each species. Black
kites, the most common Japanese hawk, make up most of the bird
appearances. Species whose appearances number more than 10 are
listed. These are candidates of classes for fine-grained categoriza-



Fig. 4. Examples of found birds and other objects. The images of different sizes are resized to the same size.

Fig. 3. Proportions of categories of found objects. Hawks were the
most frequently observed, with crows being the second most fre-
quent among the specified birds. Because there were no remarkable
differences as to the proportion of birds observed during the three
days, these figures can be regarded as typical for this location.

Table 1. Numbers of appearances of main species. Black kites, the
most common kind of hawk in Japan, make up the major portion
of the specified birds. The listed species are candidate classes for
fine-grained categorization.

species kind number of appearance
Black kite Hawk 2921

Jungle crow Crow 53
Gray-faced buzzard Hawk 36

Crested honey buzzard Hawk 30
Osprey Hawk 16

Japanese white-eye Other bird 15

tion; categorization with fewer images is difficult.
Figure 4 shows examples of birds found by the users. Some

images are relatively clearer, and thus, they can be specified in de-
tail. Even some of the not-so-clear images are specified in detail.
For example, the eastern marsh harriers in Figure 4 are not so clear.
These birds however could be specified according to their actions.
The three images are a sequence of a single individual, and it kept
a V pose while flying during the sequence. This is a characteristic
feature of eastern marsh harriers that made it possible to specify the
species of the individual.

Figure 5 shows the size distribution of birds and non-bird ob-
jects in the images. The peak of the distribution is around 25 pixels.
Distant birds are found less often because of their small size, while
nearby birds do not come in the narrow angle of view often. The
birds can not be distinguished from non-birds on the basis of their
apparent size.

3. APPLICATION: BIRD RECOGNITION
We conducted experiments to clarify the characteristics of this
dataset. We examined the nature of the dataset in relation to recog-
nition precision; namely, the objects imaged at low resolution and
the difficulty of distinguishing similar objects such as birds and

Fig. 5. Distribution of birds and non-birds in the dataset. The peak
bird size is 20 pixels square and that of non-birds is 35 pixels. The
birds and non-birds are not distinguishable by their apparent size.

airplanes or insects. At the same time, we compared the precision
of recognition of the most popular detection methods that use Haar-
like [11] and histogram of orientated gradients (HOG [12]) features.
We conducted a two-class categorization into birds and non-birds by
using Haar-like and HOG features in order to examine the features
of the low-resolution bird recognition task.

3.1. Method of Bird Recognition
We used Haar-like [11] or HOG [12] features and the AdaBoost [13]
learning algorithm. The procedure was as follows.

1. Regularize the images to the same size (24 × 24 pixels)
2. Extract Haar-like or HOG features from the regularized im-

ages
3. Train AdaBoost with the feature vectors of the training im-

ages.
4. Input the feature vectors of test images and classify birds and

non-birds.
In this method, we can classify images of different sizes with one
classifier by extracting the same dimensional feature vectors from
the regularized images.

As black and white patterns for Haar-like features, we used the
same ones that Viola and Jones [11] used. The sizes of these patterns
were two, six, and ten pixels. The cell size of HOG was four pixels
square, and the block size was 3 cells. The size of the images after
regularization was 24 × 24 pixels, and the dimension of the feature
vectors was 5567 for Haar-like and 1296 for HOG features.

3.2. Experiment
We generated bird images as positive samples and other images
as negative samples for this recognition experiment from the con-
structed dataset. First, we clipped moving objects out of the images
in the dataset by background subtraction. Clipped regions recorded
in the dataset were divided into bird regions or non-bird regions



Fig. 6. ROC curves of bird recognition. The red plot is for Haar-like
results with negative samples of backgrounds (a), blue is for HOG
with backgrounds (b), purple for Haar-like with non-birds (c), and
green for HOG with non-birds (d). The curve at the upper left has
better recognition precision. Non-bird samples include hard nega-
tives such as trees, insects and airplanes. The results (c) and (d)
show the challenging characteristics of the dataset.

according to the species and type annotations. When previously
unrecorded regions were detected by background subtraction, these
were categorized into background regions, because these are move-
ments of the wind turbine, bushes, or clouds. The bird regions
numbered 8,969, non-bird regions 1,118 and background regions
18,688.

We conducted two recognition experiments with different nega-
tive samples. First, we experimented on recognition of bird regions
and background regions. The purpose of this experiment was to eval-
uate whether birds can be detected amidst the background. Second,
we experimented on recognition of bird regions and non-birds re-
gions. The purpose was to determine whether birds and other flying
objects such as insects or airplanes can be classified.

We conducted a five-fold cross-validation to calculate the preci-
sion of bird recognition and plotted the results as receiver operation
characteristic (ROC) curves (Figure 6). The figure plots the true
positive rates (TPR) against false positive rates (FPR) and shows the
trade-off between the ratio of correct bird recognitions to misrecog-
nitions. The parameter of the curve is the threshold value in the final
stage of AdaBoost. Each plotted point shows a TPR and FPR with
one threshold value. We calculated the false positive rate as

FPR =
#{false positives}

#{negative samples} (1)

and the true positive rate as

TPR =
#{true positives}

#{positive samples} (2)

from the test data.

3.3. Results
Figure 6 shows the ROC curves. Among the four curves, the red
one (a) shows the Haar-like results with negative samples of back-
grounds, the blue one HOG with backgrounds (b), the purple one
Haar-like with non-birds (c), and the green one HOG with non-birds

Fig. 7. Examples of misrecognition in the experiments.

(d). The curve at the upper left has better recognition precision. A
shared trend in the two experiments with different negative samples
is the better precision given by the Haar-like features than by HOG.
This suggests that Haar-like is a proper feature for detecting birds at
low resolution. This seems to be because low resolution and blurry
images have larger effects on HOG features than on Haar-like fea-
tures.

Haar-like features performed well with the negative samples of
backgrounds. TPR was 0.99 when FPR was 0. In other words,
it missed 1% of the birds when it did not misrecognize the back-
grounds as birds. This shows that it is possible to detect birds from
this background. However, the precision when including the nega-
tive samples of non-birds is worse. TPR is 0.9 when FPR is 0.2 with
Haar-like. In other words, it missed 10% of the birds when it misrec-
ognized 20% of the backgrounds as birds. This shows the difficulty
of detecting birds from other flying objects, such as insects or air-
planes. Categorization between these visually similar classes is still
a challenging task.

The better performance of the Haar-like features is an unusual
result since HOG has been shown to perform better in various tasks,
including nesting seabird detection [8]. This suggests that simple
features work better on unclear images such as ours. Considering
the better performance with the simple feature, it is worth exploring
recognition using low-resolution images.

Figure 7 shows examples of false positives in the experiment.
With the negative samples of backgrounds, trees and the blades of
the wind turbine are misrecognized as birds. The background sub-
traction algorithm detected them when the illumination changed or
when the wind blew and moved them. To avoid these false pos-
itives, we need more robust background subtraction methods and
more powerful classifiers.

These results show the unique characteristics of our dataset,
which is derived from the natural environment. The recognition
performances depend much on both the algorithms and the negative
samples as showed in Figure 6. These results may be overlooked
in evaluation on more generalized benchmarks. Considering this,
it seems to be important to evaluate bird monitoring systems in the
natural environments where they actually operate. In this term, our
dataset describes the problems in realizing the natural monitoring
system and offers a preferable benchmark toward it.

4. CONCLUSION

We constructed an image dataset for ecological investigations of
birds in wind farms. This large-scale dataset, including 32,442 se-
quential images and 32,973 birds appearing in them labeled by ex-
perts, is now available. As an application, we conducted bird recog-
nition experiments and showed the unique characteristics of the low-
resolution bird detection task. Haar-like features outperformed HOG
features on this dataset, and this suggests that the task has different
characteristics from others in which HOG has been shown to per-
form well. Moreover, it became clear that objects similar to birds,
such as blades of the wind turbine or insects, can be misrecognized.
We believe that the task of low-resolution image recognition pre-
sented by our dataset will be one of the next challenges for image
processing and computer vision.
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