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ABSTRACT
This paper proposes a framework for training variational au-
toencoders (VAEs) for image distributions that have latent
groups of factors. Our key idea is to introduce a mechanism
to predict the factor group an image belongs to while simul-
taneously disentangling factors in it. More specifically, we
propose an architecture consisting of three components: an
encoder, a decoder, and a factor-group prediction header. The
first two components are trained with a VAE objective, and
the last one is trained with the proposed algorithm using the
loss of unsupervised contrastive learning. In experiments, we
designed a task in which more than one group of factors were
entangled by combining multiple datasets and demonstrated
the effectiveness of the proposed framework. The Mutual In-
formation Gap score was improved from 0.089 to 0.125 on a
merged dataset of Color-dSprites, 3DShapes, and MPI3D.

Index Terms— Variational autoencoders, Disentangling
factors, Metric learning, Unsupervised contrastive learning.

1. INTRODUCTION

Learning disentangled image representations is a challenging
subject, since a naive way of modeling data, say by an autoen-
coder, easily results in a highly complex semantic structure in
the latent space, making human interpretation unfeasible. In
the past few years, great progress has been achieved by varia-
tional autoencoders (VAEs), which learn the encoding and de-
coding distributions of images [12]. Researchers have shown
that VAE and its variants have decent ability to disentangle
factors of variations, each of which corresponds to an inter-
pretable change, such as in the object size, in a given image
dataset [10, 24, 11, 3]. There also have been many efforts to
develop applications of VAEs for semantic segmentation [14],
action recognition [25], and 3D morphing [22].

A real-world unlabeled dataset often contains multiple do-
mains, and data in each domain share a group of latent factors.
We refer to a set of factors shared in a given domain as a fac-
tor group. This work aims to solve the problem of isolating
latent variables, each of which corresponds to a particular fac-
tor when the training set contains more than one factor group,
in such a way that the disentanglement measure, called Mu-
tual Information Gaps [4], averaged over all the factor groups
is large.1 The problem setting is depicted in Fig. 1. Although
VAE is obviously a candidate method for solving this prob-
lem, it is still unclear how it performs beyond a single domain.

Fig. 1. The setting considered in this paper, where the distri-
bution of images has latent groups of factors. The goal is to
generate a latent space so that a latent variable corresponds to
a particular factor for any given factor group.

Note that here we assume the domain labels are unavailable
but the same set of domains are given at test time, making
the problem setting different from those dealt with by domain
agnostic learning [19] and by life-long disentangled represen-
tation learning [2].

The key idea of our framework is to predict the factor
group an image belongs to while simultaneously disentan-
gling factors in it. This is achieved by constraining the dis-
entangled factors to better predict the factor groups. More
specifically, an architecture consisting of three components is
proposed: an encoder, a decoder, and a factor-group predic-
tion (FGP) header. The first two are trained with a VAE objec-
tive, and the last one is trained with unsupervised contrastive
learning. In experiments, we designed a task in which more
than one group of factors are entangled by combining mul-
tiple datasets and demonstrated the effectiveness of the pro-
posed framework. In summary, our contributions are twofold.

1. We propose an extended VAE architecture that contains
a Factor-Group Prediction (FGP) header to encourage
representation disentanglement for given groups of latent
factors underlying the input variations.

2. We propose a learning algorithm for the extended archi-
tecture by leveraging unsupervised contrastive learning
and the mini-batch k-means algorithms on top of the or-
dinary VAE learning.

1Even if two or more domains have the same type of factor, we treat them
as separate factors.



2. RELATED WORK

2.1. Variational Autoencoders

VAEs are versatile generative models. The first VAE was pro-
posed in [12] for image generation. As VAEs have the ability
to disentangle factors, they play an important role in research
on latent semantics in images. Researchers have proposed
various types of VAE, such as β-VAE [10], InfoVAE [24],
FactorVAE [11], DIP-VAE [13], and β-TCVAE [3]. Among
them, FactorVAE is known to be effective at disentangling
factors of variation over images.

Some recent studies have focused on VAEs that work
in different domains. Examples include VASE for life-long
learning [2] and DADA [19] for domain adaptation. These
methods assume that the division of domains is known in
advance. In contrast, this paper focuses on the case where
multiple groups of factors are latent.

2.2. Metric Learning and Self-Supervised Learning

Metric learning is a framework for learning a metric space
and is typically implemented in a supervised manner. A re-
cent trend for this is to introduce a metric-based loss in a neu-
ral network. For example, CosFace [23], ArcFace [6], and
SphereFace [15] use the cosine similarity as their loss. These
networks are effective for face verification and object recogni-
tion. Musgrave et al. [17] compared the performances of met-
ric learning methods including losses from traditional con-
trastive loss [8] with the recent SoftTriplet loss [20]. The re-
sults show that although each loss has its advantages and dis-
advantages, CosFace and ArcFace are generally stable across
various training conditions.

Self-supervised learning is a framework for learning data
representations without the need for annotated information.
In this type of learning, neural networks are trained on pretext
tasks, such as Jigsaw [18]. Unsupervised contrastive learn-
ing has received attention for its high performance on many
image-recognition tasks. Specifically, SimCLR [5] and MoCo
[9] have demonstrated state-of-the-art performance.

3. PROPOSED METHOD

This section presents the proposed framework for disentan-
gling latent groups of factors. We first give a preliminary
review of FactorVAE [11] on the assumption that the dis-
tribution of images has a single set of factors F . We then
propose a VAE architecture with an FGP header for cases
where the distribution of images has multiple groups of fac-
tors F1, F2, · · · , FK (K > 1).

3.1. Preliminary: Disentangling Factors

LetX be a set of images, which has d factors of variation, and
denote the set of factors as F = {c1, c2, · · · , cd}. The goal

Fig. 2. Proposed VAE structure. The factor-group prediction
(FGP) header is trained via supervised metric learning or un-
supervised contrastive learning.

here is to disentangle the factors, i.e., to find a mapping from
X to Z = Rd, where z ∈ Z is a representation of an image
x ∈ X .

FactorVAE predisposes the distribution of representations
q(z) to be factorial by maximizing the following objective
function:

OF-VAE = Ep(x)
[
Eq(z|x) [log p(x|z)]− KL(q(z|x)||p(z))

]
+ γKL(q(z)||q̄(z)), (1)

where q(z|x) is the encoding distribution, p(x|z) is the de-
coding distribution, p(x) is the data distribution, p(z) is a
normal distribution, and KL is the Kullback–Leibler diver-
gence. Note that the encoder Eφ : X → Z and decoder
Dθ : Z → X have learnable parameters φ and θ. The last
term in Eq. (1) is the total correlation, which encourages z to
be factorial by maximizing the KL divergence of q(z) from
q̄(z) =

∏d
j=1 q(zj).

3.2. Disentangling Latent Groups of Factors

We will focus on the case where X has multiple groups of
factors F1, F2, · · · , FK , under the assumption that each im-
age x ∈ X corresponds to one of Fk. This setting requires us
to solve the following two problems:

(P1) Finding Fk to which the image x belongs, and
(P2) Disentangling the factors in Fk.

To solve these two problems simultaneously, we introduce
two vector spaces, namely a disentangling space Z = Rd and
a grouping space G = Rd′ . The former is a latent space in
which the factors of variation are disentangled. This is the
same as the latent space Z for the vanilla VAE. The latter
is a space to distinguish factor groups. This space has pro-
totype vectors of factor groups, by which each factor group
Fk is represented by a vector fk ∈ G. The input image x
is also embedded into this space, and its factor group is es-
timated by finding the nearest-neighbor factor group in G as
k∗ = argmink d(h,fk), where h ∈ G is an embedding of



x, and d(·, ·) is the distance metric in G. Note that the set of
prototype vectors {fk}Kk=1 and the metric d(·, ·) are learned
from training samples. In summary, (P1) and (P2) are solved
in G and Z, respectively.

Figure 2 shows the proposed architecture to learn the two
vector spaces. It consists of three components: an encoder
Eφ : X → Z, a decoder Dθ : Z → X , and a factor-group
prediction (FGP) header Hψ : Z → G. The first two compo-
nents are from a VAE. The last component, the FGP header,
is a network for mapping the encoder output z ∈ Z into the
grouping space G. The total objective is given by

O = OF-VAE − λL, (2)

where OF-VAE is the FactorVAE objective in Eq. (1), L is the
loss for the FGP header, and λ is a hyper-parameter. In the fol-
lowing, we present two learning methods, each with its own
definition of L.
(i) Unsupervised Learning for the FGP header. In the pro-
posed framework described above, two items must be learned
from a training set of images: (i) the distance metric d(·, ·) in
G, and (ii) the factor group prototypes {fk}Kk=1 ⊂ G. The
proposed algorithm incorporates unsupervised contrastive
learning into mini-batch k-means clustering. The algorithm
consists of the following four steps.
1) Randomly initialize {fk}Kk=1 using a normal distribution.
2) Draw a minibatch of images and update the parameters of

the encoder Eφ, the decoder Dθ and the FGP header Hψ

by using a stochastic optimizer with the loss in Eq. (2).
For the FGP header, the following loss is used:

L = Ep(x)

[
− log

eτ sim(h,h′)∑
r∈B\{h} e

τ sim(h,r)

]
, (3)

where h is the embedding of an image x obtained by
h = Hψ(Eφ(x)), h′ = Hψ(Eφ(x′)) is the embedding
of the augmented image x′ = t(x), t is an augmentation
function, sim(a, b) = aT b/(‖a‖‖b‖), is the cosine sim-
ilarity between two vectors in G, τ is a hyper-parameter,
and B is the set of embeddings and augmented ones (i.e.,
B consists of h and h′ of all images in the minibatch).

3) Update {fk}Kk=1 by applying mini-batch k-means clus-
tering [21] to B.

4) Repeat 2 and 3 until the loss converges.
In Eq. (3), the similarity between h and the augmented

h′ is maximized. This works because if an image x belongs
to the factor group Fk, the augmented image x′ also belongs
to the same factor group. As a result, the loss helps to learn a
reasonable metric inGwithout using ground-truth labels. It is
worth noting that this part can be viewed as being in a family
of self-supervised contrastive learnings for image classifica-
tion, e.g., [5].
(ii) Supervised Metric Learning for the FGP header. We
here describe how to learn the FGP header under the assump-
tion that ground-truth factor-group labels are given for all

training samples. This is a reference model to measure the
upper bound performance.

Let D be a training dataset, which consists of pairs (x, y)
of an image x and its factor-group label y ∈ {1, 2, · · · ,K}.
By absorbing all fk into learnable parameters, the FGP
header can be learned by applying metric learning. Specifi-
cally, we employ CosFace [23] as the loss function, which is
given by

L=Ep(x)

[
−log

eτ(sim(h,fy)−m)

eτ(sim(h,fy)−m) +
∑
k 6=y e

τ sim(h,fk)

]
, (4)

where fk is a learnable vector of Fk, and τ,m are hyper-
parameters. Note that Eq. (3) uses the cosine similarity in-
stead of a distance metric, but this is equivalent to learning
of the Euclidean distance metric d(·, ·) on a L2 normalized
vector subspace in G.

4. EXPERIMENTS

4.1. Datasets and Evaluation Measures

We demonstrated the effectiveness of the proposed frame-
work in a setting with entangled latent groups of factors.
This setting was created by merging multiple datasets, each
of which had a single set of factors. Specifically, we used
combinations of the following datasets.
MPI3D dataset [7]2 This dataset consists of 1,036,800 im-
ages of a robotic arm carrying an object. It has 7 ground-
truth latent factors: object-color, object-shape, object-size,
camera-height, background-color, horizontal-axis, and vertical-
axis.
3DShapes dataset [11] This dataset consists of 480,000 im-
ages of 3D shapes generated from 6 ground-truth latent fac-
tors: object-color, shape, floor-color, wall-color, orientation,
and scale.
Color-dSprites [10] This dataset consists of 737,280 images
of 2D shapes, generated from 5 ground-truth latent factors:
shape, scale, rotation, x-position, and y-position.

From these three datasets, we made four combined
datasets: (1) dSprites+3DShapes, (2) 3DShapes+MPI3D,
(3) MPI3D+ dSprites, and (4) All three. The original im-
age size in all datasets is 64x64 pixels; thus, each combined
dataset was made by simple dataset merging. The evaluation
measure was the Mutual Information Gap (MIG) [4].

4.2. Implementation Details

We used the PyTorch VAE implementation in [1] with the
evaluation metric implementation in [16], which provides
implementations of recent models including β-VAE, Factor-
VAE, and β-TCVAE. The backbone architecture and all VAE
hyper-parameters were the same as in [1]; i.e., the encoder

2https://github.com/google-research/disentanglement_lib



Table 1. Comparison of MIG score on four combined datasets (higher is better). “Unsupervised” and “Supervised” use losses
of unsupervised contrastive learning in Sec 3.2-i and supervised metric learning in Sec 3.2-ii, respectively.

Method MPI3D + 3DShapes MPI3D + dSprites 3DShapes + dSprites Combination of all three
FactorVAE (baseline) 0.183 ± 0.043 0.069 ± 0.030 0.109 ± 0.030 0.089 ± 0.032
Ours (Unsupervised) 0.230 ± 0.075 0.086 ± 0.036 0.113 ± 0.068 0.125 ± 0.044
Ours (Supervised) 0.230 ± 0.062 0.099 ± 0.040 0.155 ± 0.062 0.090 ± 0.023

Table 2. Comparison with other methods. MIG scores on in-
dividual test datasets are reported. Models are trained jointly
on three datasets. The last row shows scores obtained by Fac-
torVAEs trained on individual datasets (i.e., three FactorVAEs
are independently trained).
Method MPI3D 3DShapes dSprites Average
β-TCVAE [3] 0.082 0.218 0.050 0.116
DIP-VAE [13] 0.025 0.218 0.022 0.088
InfoVAE [24] 0.043 0.161 0.080 0.090
FactorVAE [11] 0.044 0.194 0.029 0.089
Ours 0.061 0.239 0.075 0.125
FactorVAE (Individual) 0.256 0.422 0.045 -

consisted of 5 conv layers (with strides of 2 and kernel sizes
of 3x3), and the decoder consisted of 6 transposed conv layers
(with strides of 2 with kernel sizes of 4). ReLU activation
was applied to all layers. The dimension of the latent vari-
ables was set to 20. The FGP header consisted of two blocks,
each with a fully-connected layer (both input and output sizes
are 20), batch normalization, and ReLU. All models were
trained with the Adam optimizer for 90k iterations. Hyper-
parameters were as follows: the mini-batch size was 64,
τ = 10.0, m = 0.1, and λ = 100.0. For mini-batch k-means,
the scikit-learn implementation was used.

4.3. Results

Table 1 compares the performance in the case of optimiz-
ing multiple domains jointly. It shows that the proposed un-
supervised method outperforms the FactorVAE baseline for
any combination of domains. Interestingly, our unsupervised
method shows comparable or just slightly worse results com-
pared to the one with supervision. This confirms the effec-
tiveness of the proposed unsupervised learning algorithm.

Table 2 analyzes the MIG scores on each test dataset, us-
ing the models trained on 3 datasets jointly as well as in com-
parison with other VAEs. The results indicate that the pro-
posed method performs the best, consistently outperforming
FactorVAE. Compared with the FactorVAE trained on just
a single dataset (the last row), the baseline (trained with 3
datasets jointly, appearing in the top row) shows totally de-
graded performance, whereas our model performs better on
one of the datasets. What we have learnt here is that dis-
entanglement of multiple domains is generally more difficult
than that of a single domain; nevertheless, our method partly
succeeds in overcoming this difficulty. These results indicate

Fig. 3. Qualitative results of disentanglement performance.
Models are trained on MPI3D+3DShapes jointly. 3DShapes
images are shown. Each row corresponds to the latent vari-
able that most represents the factor, and the x-axis represents
the changes in the latent variables.

that the FGP header for distinguishing factor groups helps to
disentangle latent factors.

Figure 3 shows a qualitative comparison of latent traver-
sals. The proposed framework mostly (but not perfectly) dis-
entangles the factors of shape, wall_color, floor_color and
scale on 3DShapes. The baseline exhibits somewhat similar
or slightly worse behavior; however, it shows sign of entan-
glement with other datasets, unlike the proposed method.

5. CONCLUSION

This paper proposed a framework for disentangling latent
groups of factors, which introduces an FGP header into VAEs.
The FGP header is trained in an unsupervised manner using
contrastive learning and mini-batch k-means clustering. In
experiments, the effectiveness of the proposed framework was
demonstrated on combinations of Color-dSprites, 3DShapes,
and MPI3D datasets. Our future work will involve applying
this technology to image retrieval on a realistic dataset.
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