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ABSTRACT

This paper tackles the problem of bird detection in large
landscape images for applications in the wind energy indus-
try. While significant progress in image recognition has been
made by deep convolutional neural networks (CNNs), small
object detection remains a problem. To solve it, we follow the
idea that a detector can be tuned to small objects of interest
and semantic segmentation methods can be complementarily
used to recognize large background areas. Specifically, we
train a CNN-based detector, fully convolutional networks,
and a superpixel-based semantic segmentation method. The
results of the three methods are combined by using support
vector machines to achieve high detection performance. Ex-
perimental results on a bird image dataset show the high
precision and effectiveness of the proposed method.

Index Terms— object detection, semantic segmentation,
CNN, FCN, birds

1. INTRODUCTION

Wind turbines used for the generation of energy are consid-
ered serious threats to endangered bird species [1], and oper-
ators now have to make assessments of bird habitats around
planned sites [2]. Automatic bird detection has hence drawn
the attention of industry, as it can reduce the cost and increase
the accuracy of investigations in comparison with manually
conducted surveys, and it may also assist automatic systems
that decelerate the blades or sound an alarm at the approach
of birds.

In such an application, problems that have different char-
acteristics from general object detection occur. The shape and
color of birds are clearly represented in recent image recogni-
tion datasets [3, 4, 5]. However, in data gathered by wide-area
surveillance cameras, bird images are at low resolution com-
pared with the entire image. Consequently, both the colors
and shapes may be so vague that the birds cannot be detected.
In addition, the background of the area under surveillance in-
cluding the wind turbines, sky, clouds, sea, and forests may
confuse the detector, leading to misdetections. Moreover, as a
result of using a fixed camera, birds appear relatively less fre-
quently; thus, these misdetections should be reduced as much
as possible. Finding small objects in large background im-

ages has so far proven to be a difficult problem for general
image recognition methods because of the large differences
in resolution [6, 7].

To solve these problems, this paper proposes a method
that detects small birds in large landscape images. Following
the previous approaches (e.g., [8]), a detector can be tuned to
small objects of interest, and larger areas can be recognized
by using other methods such as semantic segmentation. Be-
cause of its success in many image recognition tasks, we de-
cided to use a successor [9] of convolutional neural networks
(CNNs) [10, 11] for small bird detection. For larger areas, we
use fully convolutional networks (FCNs) [12] and SuperPars-
ing [13], wherein the former has the advantage of simultane-
ously detecting birds and recognizing the background, while
the latter is more suited for background recognition. Linear
SVMs [14] are used to combine all of the detection results.

The proposed method was experimentally evaluated with
a bird dataset especially constructed for ecological investiga-
tions around wind farms. We show that the detector-based
method and semantic-segmentation-based methods comple-
ment each other well; together, they yielded significantly high
precision in the bird detection task.

Related work Before the recent remarkable progress of
convolutional neural networks (CNNs), handcrafted features
were often used as feature extractors, and they were combined
with feature embeddings methods. Detection and classifica-
tion could be done with the the represented features by us-
ing classifier methods, such as boosting [15], SVMs [14], and
random forests [16]. An epoch-making change has occurred
with the advances in CNNs and the growing availability of
large-scale image datasets. Stronger learning models [17, 18]
as well as more effective techniques for suppressing overfit-
ting [19] and avoiding the vanishing gradient problem [20]
have significantly improved the performance of CNNs.

Along with the advances in CNNs, many new detection
methods have been proposed, where the main focus is in how
to perform accurate region proposals and how to speed up the
process. In region-based CNN methods (R-CNN) [21], a se-
lective search [22] is first used to identify potentially salient
object regions (called region proposal), from which image
features are extracted by CNNs and classified by SVMs. We
utilize ResNet [9], one of the most successful networks in
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Fig. 1. Overview of the proposed method

detection, while we leave the region proposals as future work
and use background subtraction for candidate region selection
in this study.

Tremendous progress has also been made in semantic seg-
mentation. There has been much debate about how to parse
both background categories (stuff), which account for larger
parts of images, and object categories (things), which account
for smaller parts of images. Various methods parse stuff and
things separately with region-based and detector-based meth-
ods [8, 23, 24].

Recently, numerous semantic segmentation methods have
been proposed that are based on FCNs [12, 25, 26]. In par-
ticular, FCNs can obtain a coarse object-label map from the
networks by combining the final prediction layer with lower
layers (skip-layer) [27, 28, 29], where the context and local-
ization information are available for pixel-wise labeling. This
paper shows FCNs can be a complement to both a detector
of things and a parser of stuffs, and together they yield high
performance.

Also in the context of object detection, some meth-
ods [30, 31] use semantic segmentation methods such as
FCNs. Inside-outside net [31] constructs networks using
skip-layers, which simultaneously perform region propos-
als and classification, and improves small object detection.
However, small-object detection has so far been harder than
normal-size or large object detection. The smaller the object
is, the lower the detection accuracy becomes [7].

2. METHOD

An overview of the proposed method is illustrated in Fig. 1.
An input image is fed into three pipelines: (1) ResNet-based
CNNs as a deep-feature-based detector with a background
subtraction preprocess; (2) FCNs as a method that works as a
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Fig. 2. Example CNN architecture for small bird image de-
tection

detector but also as a semantic segmentation, both of which
utilize deep features; and (3) SuperParsing as a hand-crafted-
feature-based semantic segmentation. The class likelihoods
and scores derived from them are combined using SVMs. The
method outputs regions judged to be images of birds.

2.1. CNNs for bird detection

We designed the CNNs based on ResNet [9], which achieved
the best results in the detection and classification of ILSVRC
2015. In ResNet, the input of a convolutional (conv) layer
bypasses one or more layers and is added to the outputs of
the stacked layers. Compared with previous net structures,
ResNet has fewer parameters. Moreover, even with deeper
structures, gradients will not easily explode or diverge.

Fig. 2 shows our network architecture based on ResNet.
We assume the sizes of the bird images ranges from 10 to 200
pixels square; thus, we design the networks to take 64×64
images as inputs, doubled the size of the original. Any size
of detected bounding box will be fitted to 64×64 and fed into
the networks. Because of this, one more block (the layers in
yellow) is added before the global average pooling in order
to capture features effectively with more hierarchies. Exper-
imentally, the combination of four blocks with n=2 produces
the best results; four blocks with n=3 produce similar results
but require a longer training time, fewer blocks have less ac-
curacy even with larger n, and more blocks cause overfitting
even with fewer n.

The rest of the networks follows [9]; here, we briefly ex-
plain it for completeness. In every conv layer, the size of the
kernels is 3×3. The very first conv layer has 16 kernels. Ac-
cordingly, there are four blocks, each of which includes four
(2n with n=2) conv layers. The number of kernels is 16, 32,
64, and 128 in each block, respectively. The first of four conv
layers in the second and later blocks includes a stride of two
subsamples, and this reduces the feature map size into half.
Thus, the feature map size (64×64) becomes 64, 32, 16, and
8, after the process of each respective block. Finally, the ends
of convolutions are connected using global average pooling,
an eight-way fully connected layer (fc 8), and softmax. We
use 18 stacked weighted layers in total.



2.2. Combining class likelihoods by SVM

We modified FCNs and SuperParsing to have four classes
(i.e., bird, sky, forest, and wind turbine), and CNNs have eight
classes from its architecture, which we selected them as fol-
lows: bird, blade, tower, anemometer, nacelle, hub, forest,
and other. The implementation details of SuperParsing and
FCNs are provided in the training section.

Each of the three pipelines yields a class-wise likelihood
or score: SuperParsing and FCNs generate pixel-wise likeli-
hoods of classes, whereas CNNs generate a bounding box-
wise score of the likelihoods of classes. If all pixels in the
images were used for training the SVMs, the amount of com-
putations would be too large to finish within a reasonable
amount of time. Consequently, we use only the pixels at the
center of the bounding boxes of candidate regions proposed
by the inter-frame difference method. After the training in the
first round, we use hard negative mining to reduce false pos-
itives and to improve the overall performance. Specifically,
image regions of anemometers, night lights, the lower parts
of nacelles, in which the FCNs often produce misdetections,
are added for SVM training. Furthermore, the pixels collected
by the inter-frame difference have statistical difference from
the true pixel distribution. Because of this, when CNNs are
simply combined with semantic segmentation based methods,
the whole framework tends to include many misdetections by
CNNs; thus, we add the background regions (sky, cloud, for-
est, and wind turbine) inside the candidate bounding boxes in
the SVM training.

3. EXPERIMENTAL RESULTS

We implemented CNNs, FCNs and SuperParsing, as well as
AdaBoost with Haar-like feature [32, 15] as a baseline. Then,
we also trained several combinations of methods with our pro-
posed framework, and evaluated their performance using a
wide-area surveillance dataset of wild birds [33].

Dataset First, we picked out 82 images with different
weather conditions from the dataset, which contains a set
of images with 2806×3744 pixels taken nearby a wind tur-
bine. The images were manually annotated into four classes:
bird, wind-turbine, sky, and forest.

We omitted five images that were too dark due to stormy
weather, and used the remaining 77 images for training of
SuperParsing and FCNs. Specifically, for FCNs, the images
were cropped to 500×500 pixels, because the original images
were too large to process with FCNs on our GPU memory.
Cropping the entire image randomly may cause there to be
frames with only the sky labels, because more than a half
of each image was occupied by sky. With this in mind, we
performed cropping around the wind-turbine area more inten-
sively, and obtained 70 frames from each image by shifting a
500×500 pixel window through the area. Eventually, we had
77×70=5390 frames for training FCNs.

The training images for ResNet were acquired as candi-
date regions of moving objects with background subtraction.
The training images include bird and non-bird regions, and
we prepared a class of bird and seven background classes.
These extra classes help training the networks because they
are frequently included in the candidate regions and likely to
cause misdetection. To train the AdaBoost with Haar-like fea-
tures, we used 15705 bird images and 18688 non-bird images
similarly collected to train ResNet.

Evaluation We conducted the evaluation on 44 of the 77
labeled images that included more birds (183 in total) than
the others. We quantified the performances of the method
by using the F-measure, i.e., the harmonic mean of precision
and recall. In the evaluation, we regarded detected bound-
ing boxes that had any overlap with groud-truth boxes as cor-
rect detections and boxes with no overlap as misdetection.
Similarly, in segmentation-based methods, we regarded the
outputs that had any region of overlap with the ground truth
as correct detections, and those without overlap as misdetec-
tions.

Training SuperParsing: We trained SuperParsing with the
77 images annotated with four classes by using 11-fold cross
validation. In [13], to form retrieval sets semantically similar
to an input image, the size of the retrieval sets were set to 200.
But as we had only 77 annotated images, we retrieved all of
the images.

FCNs: We used an FCN-8s model [12] pretrained on
PASCAL-Context [34], which contains 59 category (+ back-
ground) segmentations. The 59 (+ 1) classes include bird and
sky, but forest or wind turbine are not included. Alternatively,
we utilize tree and airplane classes, as pretrained classes of
forest and wind turbine, respectively. We then fine-tuned the
model with the prepared images for FCNs by using two-fold
cross validation.

CNNs: We trained the ResNet based model with eight-
class training images from scratch. We used a weight decay
of 0.0001 and momentum of 0.9, and the method described
in [35] for initializating the weights (i.e., in the same way as
[9]). In addition, we used batch normalization [20] to reduce
the internal covariate shift and accelerate learning. A batch
normalization layer was added to the output of every convo-
lutional layer.

Haar+AdaBoost: AdaBoost with Haar-like features was
trained following [33]. Moving object candidates were de-
tected by the inter-frame difference. Then, the object candi-
dates were marked with square bounding boxes and trained
the detector from the bird and non-bird labels.

SVMs: We combined the class likelihoods or scores by us-
ing pixel-wise SVM training and evaluated the performances
of the individual methods and their combinations.

Results Fig. 3 shows examples of detection results on the
bird image dataset intended for ecological investigations.
More results can be found in the supplementary material.



Method Precision Recall F-measure
HA 0.064 0.514 0.114
SP 1.000 0.366 0.536

FCN 0.684 0.519 0.590
CNN 0.598 0.902 0.719
SP* 0.989 0.508 0.672

FCN* 0.709 0.585 0.641
FCN+SP 1.000 0.546 0.707
CNN+SP 0.950 0.618 0.748

CNN+FCN 0.924 0.798 0.856
Proposed (CNN+FCN+SP) 0.955 0.803 0.872

Table 1. F-measure of various methods. * represents the
method combined with SVMs.

Size Method Precision Recall F-measure

tiny

FCN+SP 1.000 0.030 0.058
CNN+SP 0.826 0.284 0.422

CNN+FCN 0.808 0.627 0.706
CNN+FCN+SP 0.860 0.642 0.735

small

FCN+SP 1.000 0.800 0.889
CNN+SP 0.969 0.775 0.861

CNN+FCN 0.972 0.863 0.914
CNN+FCN+SP 1.000 0.863 0.926

normal

FCN+SP 1.000 0.944 0.971
CNN+SP 1.000 0.890 0.941

CNN+FCN 1.000 0.972 0.986
CNN+FCN+SP 1.000 0.972 0.986

Table 2. F-measure of various methods by size

We counted the true positives (TP) and false positives (FP)
of birds and calculated the precision, recall and F-measure.
The results are summarized in Table 1. AdaBoost with Haar-
like features and SuperParsing are denoted as HA and SP, re-
spectively. In addition, SP* and FCN* represent the method
combined with SVMs. Usually, SP or FCNs output class la-
bel with the highest likelihood, while SVMs consider all of
the class likelihoods for the output through learning.

The upper part of Table 1 shows the results of individ-
ual methods. SP achieved the highest precision, while CNNs
achieved the best recall rate. FCNs achieved the intermidiate
score between SP and CNNs. As expected, CNNs highly out-
perform HA. SP* and FCN* performed better than the ones
without SVMs, showing that SVMs have the ability to maxi-
mize the potential of semantic segmentation methods.

The lower part of Table 1 shows the results of combina-
tion of methods, where all combinations exceed each single
method in terms of F-measure. Particularly, combinations
with SP have higher precision, suggesting that SP can sup-
press false positives because it can recognize backgrounds
well. The CNN+FCN result shows FCNs also can recognize
backgrounds. The proposed method achieved the highest F-
measure.

Input

CNN FCN* SP*

CNN+FCN CNN+SP FCN+SP

Proposed (CNN+FCN+SP)
Fig. 3. Examples of detection results on the bird image
dataset intended for ecological investigations. The green
squares mean TP. The red squares mean FP.

To show the robustness of our method to the varying size
of the bird images, Table 2 summarizes the results according
to image size. The three image sizes, tiny (≤15×15), small
(≤45×45), and normal (>45×45) are determined according
to [7]. In all image sizes, the proposed method produces the
best F-measure. SP is not suited for detecting tiny images of
birds, while when combined with both CNN and FCN, SP can
work effectively. In the case of small and normal, CNN+FCN
achieved the highest F-measure, followed by FCN+SP and
CNN+SP.

4. CONCLUSION

We combinined a CNN-based detector with a fully convo-
lutional network and a superpixel-based semantic segmen-
tation by using support vector machines to achieve high
performance in detecting small objects in large images. Ex-
periments on a bird image dataset intended for ecological
investigations, showed that our method detects birds with
high precision. In addition, we experimentally elucidated the
role of each method in small object detection.
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