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Abstract
Many object surfaces are composed of layers of differ-

ent physical substances, known as layered surfaces. These
surfaces, such as patinas, water colors, and wall paintings,
have more complex optical properties than diffuse surfaces.
Although the characteristics of layered surfaces, like layer
opacity, mixture of colors, and color gradations, are sig-
nificant, they are usually ignored in the analysis of many
methods in computer vision, causing inaccurate or even er-
roneous results. Therefore, the main goals of this paper are
twofold: to solve problems of layered surfaces by focusing
mainly on surfaces with two layers (i.e., top and bottom lay-
ers), and to introduce a decomposition method based on a
novel representation of a nonlinear correlation in the color
space that we call the “spider” model. When we plot a
mixture of colors of one bottom layer and n different top
layers into the RGB color space, then we will have n differ-
ent curves intersecting at one point, resembling the shape
of a spider. Hence, given a single input image containing
one bottom layer and at least one top layer, we can fit their
color distributions by using the spider model and then de-
compose those layered surfaces. The last step is equivalent
to extracting the approximated optical properties of the two
layers: the top layer’s opacity, and the top and bottom lay-
ers’ reflections. Experiments with real images, which in-
clude the photographs of ancient wall paintings, show the
effectiveness of our method.

1. Introduction

The surface of most natural objects contains a number of
layers with different physical substances. For instance, hu-
man skin is composed of at least two layers: epidermis and
dermis. Each of these layers has distinct optical properties,

(a) (b) (c) (d) (e)

Figure 1. The two-layered surfaces of water colors: (a) Real input
image. (b) Simulation by reducing the opacity of the original 10%,
(c) by reducing 50%, (d) by increasing the opacity 3 times, and (e)
by increasing 9 times.

such as opacity and reflectance, and this kind of surface is
known as layered surfaces. The total reflection from such
a surface, and therefore its appearance, is determined by
those optical properties. As an illustration, let us consider
a two-layered surface with different colors. The appearance
of the surface is the mixture of the colors governed by the
opacity of the top layer. If the opacity changes gradually
across the surface, then the mixture of the colors will change
accordingly, as depicted in Fig. 1. a. Other examples of
layered surfaces are leaves, biological tissues, patinas, and
some paintings including wall paintings.

To decompose such surfaces and to extract each layer’s
optical properties will be beneficial to many research fields,
such as archaeology, biology, and medical fields. For exam-
ple, if we have ancient wall paintings in which some of the
parts are degraded (but not totally removed) due to weather
and time, and we have to recover those parts, then we need
to extract the top layer (the painting layer) from the bottom
layer (the wall layer). Having extracted the optical prop-
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erties, we can generate various simulated images based on
different opacities. This is illustrated in Fig. 1. Similarly,
this technique can be used to decompose other layered sur-
faces.

Many models of layered surfaces have been introduced
[2, 21, 6, 3] that rely on radiative transfer theory. One highly
detailed representation is the many-flux scattering model
presented by Mudgett [11]. However, the model is too com-
plex and cannot be applied to our problem setting. In color
science and computer vision, there are two simpler models
that are frequently used: the Kubelka-Munk (KM) model
[7] and the Lambert-Beer (LB) law [1]. The KM model is
explicitly based on two flux scattering models, while the LB
law is based on the exponential function of the attenuation
factor. Both of them are approximated models. In the com-
puter vision community, many papers [13, 12, 15, 5, 17] ex-
tend the LB law into a linear combination of transmissions
and reflections, which we call the LB-based model. The
KM model is more complex than the LB-based model and is
supposed to be more accurate. However, in our experimen-
tations, we found that the KM model is more susceptible to
noise. Hence, this paper uses the LB-based model.

The goal of this paper is to extract the optical proper-
ties of layered surfaces with tow layers(i.e., top and bot-
tom layers). We intend extract the opacity of the top layer
and the reflection of both layers using the LB-based model.
The extraction implies the decomposition of the two layers.
To attain our goal, we will use a “spider” model, a novel
representation of a nonlinear correlation in the color space.
The reason we call it the spider model is because, when we
plot the RGB values of the mixtures of one bottom layer
and n different top layers into the color space, then we will
have n different curves intersecting at one point, resembling
the shape of a spider. This shape can be derived from the
LB-based model, mathematically. Hence, given a single in-
put image containing one bottom layer and at least one top
layer, we can fit the spider model to their color distributions
and then decompose those layered surfaces.

A number of approaches used in digital matting are re-
lated to this paper, since the LB-based model happens to
be similar to a model used in digital matting that is known
as the alpha-matting equation. The goal of digital matting
is to extract foreground objects from the background, and
therefore is about estimating the degree of a pixel occupied
by foreground objects. There are several types of digital
matting. Poisson-based matting [18] resolves the problem
by using the gradients of the opacity and solving the partial
differential equation. Robust matting [20] proposes a ro-
bust global sampling method, assisting the local sampling
procedure to generate a sufficient number of color samples.
Closed-form matting [8] and spectral matting [9] assume
foreground and background colors can be fitted with a lin-
ear color line model in local windows, which leads to a
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Figure 2. (a) The optical model of the Lambert-beer model. (b)
The optical model based on the Lambert-Beer model of layered
surface objects

quadratic cost function in alpha that can be minimized glob-
ally. Other methods of digital matting are [4, 16]. Almost
all of these matting methods assume that color change ap-
pears to be a line in RGB space, since the occupancy of
foreground objects equally affects RGB channels. However,
for layered surfaces, color change becomes a curved line in
RGB space. This is one of the main differences between the
alpha-matting equation and our model.

This difference is also true of the group of papers by S.
K. Nayar’s group that initiated an area referred to as bad
weather. The representative examples include enhancement
of visibility in atmospheric imagery [13, 12, 15, 5]. In these
papers, the researchers consider color mixture caused by a
layer of water drops. Since the attenuation caused by a wa-
ter drop is close to gray, like in the alpha-matting equation,
the color mixture in their problem setting can be assumed
to be linear in RGB space.

In computer graphics, several models have been pro-
posed to visualize layered surfaces and their scattering
properties, such as human skin and subsurface scattering
[8,6,3]. However, they are intended for the purpose of vi-
sualization, and too complex to be used in computer vision
frameworks.

The structure of the remainder of this paper is as follows:
in Section 2, we discuss the model used in our method. In
Section 3, the spider model, which is the core of our de-
composition technique, is explained in detail. In Section 4,
we apply the spider model to estimate two-layered surfaces.
In Section 5, we show how to simulate different opacities,
rendering different appearances of a layered surface. We
discuss the experimental results in Section 6, and in Sec-
tion 7, we discuss our framework. Finally, in Section 8, we
conclude our paper.

2. Layered Surface Model

The optical transmittance of light passing through a
transparent object can be described by the Lambert-Beer
Law [1]. It is the exponential function of the attenuation fac-
tor multiplied by the distance of the light traveling through



the object, which is written as:

T (λ) =
Io(λ)
Ii(λ)

= e−µ(λ)d, (1)

where T is the optical transmittance, λ is the wavelength, Io
is the intensity of the outgoing light, Ii is the intensity of the
incoming light, µ is the attenuation factor of the object, and
d is the distance of the light traveling through the object
(the length of the light path). Assuming the light travels
perpendicularly to the object surface, d can represent the
optical thickness of the object. Fig. 2. a shows the pictorial
description of the law.

The light reflected from layered surfaces can be modeled
based on the Lambert-Beer law, which in this paper we call
the Lambert-Beer based model, or LB-based model. First,
let us consider the reflection from the bottom layer. The
light reflected from the bottom layer is attenuated during
the travel through the top layer; thus, the light received by
the sensor becomes B(λ)e−µ(λ)d from Eq. (1). B is the
reflected light at the bottom layer, µ is the attenuation of the
top layer, and d is the thickness, as illustrated in Fig. 2. b.

The light that is reflected by pigments of the top layer
in the infinitesimal distance dl is F (λ)µ(λ)dl, according
to the definition of attenuation [13]. Here, we assume
that pigments receive the same amount of light F in the
top layer. The total amount of light reflected by the top
layer is the sum of the light coming from each infinitesi-
mal distance dl, which is the integration over the distance
d:

∫ d

0
F (λ)µ(λ)e−µ(λ)ldl = F (λ)(1 − e−µ(λ)d). Note that

each light from dl is attenuated by the factor of e−µl by
other pigments.

Thus, the total amount of light observed by the sensor
becomes

I(λ) = B(λ)e−µ(λ)d + F (λ)
(
1 − e−µ(λ)d

)
, (2)

where I is the mixture intensity of the transmitted light
from bottom and top layers. We call I a mixed layer. B
and F can also be defined as the intensity of light coming
from the surface when the thickness d is zero and infinitely
large (∞), respectively. In this paper, we define opacity
φ(λ) = 1 − e−µ(λ)d. Hence, if we have two-layered sur-
faces, they are composed of the bottom layer B(λ), the top
layer F (λ), and the opacity of the top layer φ(λ). This pa-
per assumes that the opacity of the bottom layer is infinitely
large throughout the image.

In more details, there are two types of bottom layers.
The first is the bottom layer that is not covered by the top
layer. This bottom layer receives light directly from the
light source, which mathematically can be described as:

B′(λ) = L(λ)ρ(λ), (3)

(a) (b)

Figure 3. Spider model: (a) The plot of Fig. 1. a into the nor-
malized color space. The gray circle represents the bottom layer’s
reflection. Black circles represent the top layer’s reflection with
the largest opacity value. (b) Left side: simulation of spider model
using LB-based model. We plotted three colors with various opac-
ity values. The gray circle represents the bottom layer’s reflection.
Black circles represent the top layer’s reflection when the opac-
ity=1. Right side: the simulated image.

where B′ is the reflection of the bottom layer when it is not
covered by the top layer. L is the light intensity. ρ is the
albedo of the bottom layer.

The second type is the bottom layer covered by the top
layer, which we can formulate as:

B(λ) = L(λ)e−µ(λ)dρ(λ), (4)

and differs from Eq. (3) due to the change of the light
impinging on its surface (L(λ)e−µ(λ)d). Note that in the
last equation, we ignore the cumulative reflections reflected
back and forth from the bottom layer to the top layer (the
interface reflections), since we assume that the top layers
are sufficiently thin.

3. Spider Model

Pixel values of a layered surface distribute as a curved
line in the RGB space. They resembles the shape of a spider
when multiple lines are observed. This section introduces
the spider model and shows the derivation of it using the
LB-based model (Eq. (2)).

Let us start with an example. Fig. 3. a shows the plot
of Fig. 1. a into the RGB space. As one can observe, the
three top layers roughly form three non-linear lines in the
space. They stretch from the pixel values that represent the
top layers with the largest opacity to the pixel values rep-
resenting top layers with less and less opacity, and end up
by intersecting at the bottom layer where the opacities of
the three top layers equal zero. Fig. 3. b shows a synthetic
image generated by the LB-based model (right), and its plot
into the color space (left).

Mathematically, we derive the spider model as follows.
First, instead of using spectral data, we use RGB color data
taken from an ordinary digital camera for which the gamma
correction is set to off. The LB-based model for the RGB



data, then, can be expressed as:

Ic(x) = Bc(x)e−µc(x)d(x) + Fc(x)
(
1 − e−µc(x)d(x)

)
,

(5)

where index c represents one of the three color channels
{r,g,b} and x is the spatial image coordinate. Bc is the re-
flection by the bottom layer. Fc is the reflection of the top
layer when the thickness is infinitely large (or sufficiently
large so that the bottom layer does not affect the top layer’s
reflection). In the last equation, we assume that the cam-
era’s color sensitivities follow the Dirac delta function. For
the sake of simplicity, we will omit x throughout the paper;
however, unless it is stated otherwise, the variables should
be considered to be dependent on x.

Considering the intensities in the red and green color
channels, from Eq. (5), we can write:

Ir = Bre
−µrd + Fr(1 − e−µrd) (6)

Ig = Bge
−µgd + Fg(1 − e−µgd). (7)

In the two equations, all variables are dependent on the
color channels except for d. Thus, by letting αc = e−µcd:

− d =
ln(αc)
µc

(8)

ln(αr)
µr

=
ln(αg)
µg

(9)

αr = αµr/µg
g . (10)

From Eq. (7), we know that:

αg =
Ig −Bg

Fg −Bg
. (11)

Substituting the last equation into Eq. (10), we can obtain:

αr =
(
Ig −Bg

Fg −Bg

)µr/µg

. (12)

Finally, by plugging the last equation into Eq. (6), we
can express the intensity of the red color channel as:

Ir = Br + ψr(Ig −Bg)γr , (13)

where γr = µr/µg , and ψr = (Fr−Br)/(Fg−Bg)γr . Ac-
cordingly, we can apply to the blue color channels, resulting
in the following equation:

Ib = Bb + ψb(Ig −Bg)γb , (14)

where ψb = (Fb−Bb)/(Fg−Bg)γb , and γb = µb/µg . Eqs.
(13) and (14) imply that the correlations of the intensities in
different color channels are not linear. Fig. 3. a shows the
plot of the intensities, Ic, of layered surfaces (Fig. 1. a)

in the RGB space, which form curved lines as predicted by
Eqs. (13) and (14).

This spider model is the core of our method, since by
obtaining it, we are able to know the optical parameters of
the layered surface, which in turn enables us to classify the
color of the top and bottom layers of a pixel. Furthermore,
using their properties, we can analyze opacities of layers,
and also simulate the color changing depending on the top
layer’s thickness as shown in Fig. 1.

4. Estimating Optical Properties of Layered
Surfaces

Given a single input image containing the mixture of bot-
tom and top layers, this section shows how to extract the
optical properties of layered surfaces based on the spider
model. This process is possible to be fully automatic, for
example by tracing every line distribution in the color space,
similar to [14]. However, in this paper, to show the effec-
tiveness of the spider model, we utilize simple user interac-
tions to brush rough areas where the top layers and back-
ground layers are present. The brushing (or scribling) can
be as simple as drawing a line, as shown in Fig. 4. b.

Overall, our proposed method consists of two processes:
(1) Extracting the spider model (ψc, γc), (2) Determining
the value of Bc, Fc and φc of each pixel in the input image
by using a graphical model. This process is similar to the
problem of labeling pixels by using multiple labels.

4.1. Estimating Spider Model

The aim of this section is to discuss how we can extract
the spider model’s parameters (ψc, γc). We consider two
of cases: (1) an input image with a single bottom layer and
several top layers, (2) an input image with several top layers
and several bottom layers. Note that, these cases are just
examples of conditions where our method can work.

Fig. 4. a shows an example of case 1. We assume that
from the user’s scribble we can have parts of regions where
the top layers are present and parts of the bottom layer’s
region. To have the spider model’s parameters of each re-
gion, we plot the pixels that correspond to the scribble on
the top layer, producing three indepedent distributions in
the RGB space as shown in Figs. 4. c - e. Fitting the spi-
der model onto each of the distributions according to Eq.
(13) and (14), will give us the values of {ψc, γc} for red,
green, and blue top layers. To help estimate {ψc, γc}, we
use Levenberg-Marquardt method. The same process also
works for an input image that has a single bottom and a sin-
gle top layer. Note that Bc is known, since we can obtain it
from the bottom region marked by a user.

Fig. 5. a shows an example of case 2, an input with sev-
eral top layers and several bottom layers. For this case, not
only can we estimate {ψc, γc} for every top layer, but also
estimate the values of Fc. Since according to the spider
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Figure 4. Estimated spider model: (a) Input image. (b) Marked
regions. (c) Estimated line of blue. (d) Estimated line of red. (e)
Estimated line of green.

model, if we have a top layer with two bottom layers, we
will have two curve lines that intersect at a point represent-
ing opacity, φc = 1. This phenomenon is shown in Fig.5.
c until e. In the perspective of the spider model, the phe-
nomenon also occur when we have two or more top layers
and one bottom layer, where the intersection point indicates
the reflection of the bottom layer Bc.

4.2. Layered Surface Decomposition
To decompose layered surfaces in an image is equivalent

to estimating Fc, Bc, and φc for every pixel in the image.
Therefore, given {Ix}, {Bc}, {wl}, where index x repre-
sents an input-image pixel, Ix is the RGB values of pixel
x, wl is the curve line (or the spider’s leg) generated by
{ψc, γc} of top layer l, we intend to estimate the label of
x. In our case, the number of labels depends on the number
of the top layers and the bottom layers, which is defined as
L = [1, . . . , l, . . . , N + 1], where N is the number of the
top layers, and N + 1 is because we include the label of the
bottom layer. For clarity, in this section we assume that we
only use one bottom layer, although the method discussed
below can also work for multiple bottom layers.

Solving this problem is also equivalent to computing the
probability of the label of a pixel based on the distance be-
tween the pixel’s RGB value and a leg of the spider model,
where the leg represents the curve line that leads to the top
layer. The closer the distance of a pixel to a leg, the higher
the probability.

To correctly label the pixels, we should incorporate the
case when a pixel is closed to the head of the spider model,
meaning when a pixel is closed to a bottom layer. This can
be solved by creating a data cost described as follows:

D(x = l|Bc, wl, Ix) =
{

0 if d(Ix, Bc) < th
1 − e−d(Ix,wl) otherwise

(15)

(a) (b) 

(c)

(d)

(e) 

Figure 5. Estimated spider model using the intersection of color
lines. (a) Input image. (b) Marked regions (c) Red: (left) Es-
timated color lines, (right) Estimated color of the top layer and
ground truth. (d) Blue: (left) Estimated color lines, (right) Esti-
mated color of the top layer and ground truth. (e) Green: (left)
Estimated color lines, (right) Estimated color of the top layer and
ground truth.

where Bc is the RGB value of a bottom layer. wl repre-
sents the curved line created by parameter {ψl

c, γl
c}. Func-

tion d represents the Euclidean distance in the RGB space.
Threshold th is set depending on the noise level of the bot-
tom layer and the camera, in our experiment we set the value
between 10 ∼ 20 (within RGB standard values from 0 to
255). As the initial values, for all values of i and x, we set
D(x = l|Bc, wl, Ix) = 1.

Next, we also employ the smoothness constraint, and
model the spatial correlations based on MRFs:

E ({x}, {Bc}, {wl}, {Ix}) =
∑

p

D(x = l|Bc, wl, Ix)

+
∑
p,q

S(xp, xq) (16)

where S(xp, xq) will be zero if xp = xq, and one other-



(a) (b) (c) (d)

Figure 6. The result of layered surface decompostion: (a) Input
image with user specified top and bottom strokes. (b) Extracted top
layer’s image. (c) Extracted bottom layer’s image. (d) Extracted
opacity image (1 − e−µd).

(a) (b) (c) (d) (e)

Figure 7. (a) Estimated opacity image. (b) Reducing the opacity
with n = 0.1. (c) Reducing the opacity with n = 0.5. (d) Increasing
the opacity with n = 3. (e) Increasing the opacity with n = 9.

wise. To minimize the cost function, we use graphcuts for
multiple labels [19].

Having labeled every pixel, we can now estimate the val-
ues of Fc, by analyzing the pixel distribution that are labeled
to a top layer. Fc is the pixel that has the largest geodesic
distance from Bc, since they are the edge points of the dis-
tribution. Finally, having estimated the values of Fc, we can
straightforwardly compute the values of φc (the opacity) for
every pixel. The Figs. 6 show decomposed images of Fig.
1. a.

5. Simulation

Having decomposed the layers and extracted their opti-
cal properties, we are able to simulate the top layer’s ap-
pearances with various degrees of opacity. If the estimated
opacity image is represented as φ = 1−e−µd, we can write:
e−µd = 1−φ. From Section 3, we know that if we increase
the opacity, optically it means we increase the optical thick-
ness of the object. Thus, increasing the thickness n times
implies:

e−µnd = (1 − φ)n. (17)

Based on the last equation, we can simulate the opacity by
using the following formula:

(a)

(c) (d) 

(b)

(e) 

Figure 8. (a) Input image: a water color painting painted by a pro-
fessional artist. (b) Input image with user-specified top and bottom
strokes. (c) Extracted top layers. (d) Extracted bottom layer. (e)
Extracted opacity image.

φ′ = 1 − (1 − φ)n, (18)
where φ′ is the simulated opacity, and n is a positive real
number to change the thickness.

We simulated the opacity of the water color painting in
Fig. 1.a. Fig. 7. a shows the original estimated opacity,
while Figs. 7. b-e show various simulated opacities. These
opacities correspond to the appearances of the water color
shown in Figs. 1. a-e. Note that the opacity is dependent on
the wavelength, thus different color channels give different
opacities, making the appearance of the opacity not white.

6. Experimental Results

Setup In our experiment, we captured the images using
NIKON D1X. The camera is radiometrically calibrated to
obtain a linear correlation between the incoming light and
the image intensities by setting the gamma correction off.
We arranged the position of the light source distant from
the objects, and we excluded the possibilities of shadows
and interreflections. The regions of mixed layers and bot-
tom layer in the captured image are roughly marked by user
interaction. Then, optical properties of the layered surfaces
are estimated.

Results First, we demonstrate the application of layered
surface decomposition to a water color painting. Figs. 8. a
and b show, respectively, the input image, and the regions
marked by a user. The input image is a water color painting
painted by a professional artist. The result of the estimated
values of Fc for every pixel is shown in Fig. 8. c, which
also represents the success of segmentation using a spider
model. In Fig. 8. c, the region in gray is the pixels labeled



(a) (b) (c) (d)

Figure 9. Segmentation of layered surfaces: (a) Closed-form mat-
ting [8]. (b) Lazy Snapping [10]. (c) K-means. (d) Our method.

as the bottom layer. Other colors represent the estimated
top layer’s color of each pixel. Figs. 8. d and 8. e show the
images of the bottom layer Bc and the estimated opacity φ,
respectively. Fig. 8. d is white since it represents the white
canvas.

Next, as the results of being able to increase opacity syn-
thetically, we can apply our method to increase the accu-
racy and robustness of color segmentation, particularly for
objects with layered surfaces. Here, we will show the re-
sults of our segmentation based on our layered surface de-
composition compared with the closed-form matting [8], an
object segmentation method [10] and a k-means method.
Fig. 9 shows the segmentation results of applying other
methods to the images shown in Fig. 8. a and Fig. 10.
a. Fig. 9. a shows the results of a closed-form mat-
ting method [8]. Fig. 9. b shows the results of an ob-
ject segmentation method [10], and Fig. 9. c shows the
results of a k-means method. Compared with our meth-
ods, these results are considerably less accurate and less
robust. For these experiments, we used the Interactive Seg-
mentation Tool-Box software (http://www.cs.cmu.edu/ mo-
hitg/segmentation.htm) and matting software [8].

Finally, we conducted experiments simulating color
change depending on various thicknesses of the top layer.
Fig. 10 shows the simulation results for a number of real
objects using our method. In each image, (a) is the input
image, and (b) is the estimated opacity image.

Fig. 10. 1 shows the results of Fig. 8. In these results,
we can simulate color change by various thicknesses of pig-
ments. Fig. 10. 2 shows the results of a rock painting using
powdered mineral pigments. We tried to recover some of
the degraded parts of the wall painting. From the results,
we could simulate color changes based on the various de-
grees of degradation. Fig. 10. 3 shows a relief of an ancient

temple that was degraded by microorganisms. Using these
simulation results, it is possible to show the degree of mi-
crobial growth.

7. Discussions

In this discussion, we intend to explain the reasons we
use the LB-based model instead of using the KM model.
The latter model is expressed as:

Ic =
1

Fc
(Bc − Fc) − Fc(Bc − 1

Fc
)eSX( 1

Fc
)−Fc

(Bc − Fc) − (Bc − 1
Fc

)eSX( 1
Fc

−Fc)
(19)

where X is the thickness, S is the scattering coefficient. As
one can observe, the equation is considerably more complex
compared to that of the LB-based model.

Aside from the complexity of the model, we have inten-
sive empirical comparisons between the two models. For
this, we hold the following expectation: For a given top
layer with a certain opacity on top of several different bot-
tom layers, the estimated Fc must be consistent. With this
expectation, we compared the accuracy and robustness of
the KM and the LB-based model.

We experimented with various transparent objects as the
top layers and various opaque objects as the bottom layer.
We calculated RMSE (Root mean square error) and STD
(standard deviation) w.r.t the ground truth. For the KM
model, the RMSE was 0.2993, and the STD was 0.0247.
For the LB-based model, the RMSE was 0.2964, and the
STD was 0.0273. These results show that the accuracy
difference of the KM and LB-based models was insignif-
icant. Therefore, it is reasonable to choose the LB-based
model over the KM model due to the simplicity of the for-
mer model. Note that, like the KM model, the LB-based
model assumes that the scattering coefficients are consider-
ably small and negligible.

Our framework is capable of both decomposing layered
surfaces and simulating the image of layered surfaces ef-
ficiently. We consider that the framework can be useful
for many applications. First, we mentioned opacity simu-
lations, which can be useful for computer graphics. Sec-
ond, in water color paintings, we can apply our framework
for color editing. Finally, in wall paintings, we can recover
original regions of the degraded wall painting, and also an-
alyze the process of degradation.

8. Conclusions

We have demonstrated a decomposition method for lay-
ered surfaces by using the spider model, a novel model
to analyze the distribution of layered surface in the RGB
space. The decomposition is equivalent to extracting the op-
tical properties of the surfaces. We consider the process of
decompositing layered surfaces could benefit many applica-
tions in computer vision and graphics, since many objects in
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(1) Water painting

(a)

(b)

(c)

(d)

(e)

(f)
(2) Rock painting using powdered mineral pigments

(a)

(b)

(c)

(d)

(e)

(f)
(3) Microorganisms on bas-relief

Figure 10. Simulating color change of layered surfaces depending
on various thicknesses of top Layers. (a) Input image. (b) Esti-
mated opacity 1 − e−µd image. (c) Simulated image by reducing
the opacity 10%. (d) Opacity image reduced 10%. (e) Simulated
image increasing opacity 3 times. (f) Opacity image increased 3
times.

nature have layered surfaces. In addition, experiments with
real images showed the effectiveness and the robustness of
our proposed method.
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