CROSS-CONNECTED NETWORKS
FOR MULTI-TASK LEARNING OF DETECTION AND SEGMENTATION

Rei Kawakamiy; Ryota Yoshihashi, Seiichiro Fukuda, Shaodi You o Makoto lida,

'The University of Tokyo

ABSTRACT

Multi-task learning improves generalization performance in
neural networks by sharing knowledge among related tasks.
Existing models are for task combinations annotated on the
same dataset; research on how to utilize the knowledge of
successful single-task convolutional neural networks (CNNs)
that are trained on individual datasets is limited. We propose
a cross-connected CNN, an architecture that connects single-
task CNNs through convolutional layers that transfer useful
information to their counterparts. We evaluated the architec-
ture with a combination of detection and segmentation using
datasets of two targets: pedestrians and wild birds. Experi-
ments demonstrate how well our CNN learns general repre-
sentations from multi-task learning.

Index Terms— Multi-task Learning, Pedestrian Detec-
tion, Bird Detection, Semantic Segmentation

1. INTRODUCTION

Multi-task learning improves the generality of performance
by mutually utilizing information of related tasks [1]. The
most common way to achieve this is to share parameters in
feature representation layers and branch several top layers
for task-wise prediction [2, 3, 4, 5, 6, 7, 8] as illustrated in
Fig. 1(a). However, this architecture can be restrictive be-
cause sharing choices, either by hard or soft sharing [9, 10,
11], are discrete, and the number of shared layers are fixed
among all tasks. Performance in each task may be harmed
because feature representations, particularly in upper layers,
must be specialized for each task [12, 13]. A cross-stitch net-
work [14] alleviates this problem with a more general archi-
tecture, as shown in Fig. 1 (b). It utilizes element-wise linear
combinations of activation maps from each task stream, while
retaining individual network parameters. It is, however, lim-
ited in that it considers only the combination of channels with
corresponding indices.

In this paper, we propose a cross-connected convolu-
tional neural network (CNN), as shown in Fig.1(c). We
cross-connect intermediate layers of single-task CNNs via
convolutional (conv) layers, which learn the importance of
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Fig. 1: Comparison of multi-task learning architectures. (a) The
layers learn the same representations suitable for both tasks. (b) Two
scaling layers model the channel-wise weighted sum of activation
maps from conv layers. (c) Two cross-connecting layers model a
linear combination of activation maps utilizing all channels.

each activation map for the other task and determine which
information to be sent to which destination. This enables the
task-wise streams communicate with each other by exchang-
ing their activation maps. To verify the effectiveness of the
cross-connected CNN, we compare its performance with that
of several baseline CNNs. We used object detection and se-
mantic segmentation as two tasks to combine, a combination
that may benefit from multi-task learning. We particularly
investigated multi-task learning from different datasets of two
tasks to exploit more diverse information sources, while ex-
isting studies have only used datasets with annotations for
both tasks [15, 16]. In the experiments, we tested our pro-
posed network with two types of object that are common
to the two tasks: pedestrians and wild birds. Experiments
on pedestrian data show the proposed CNN produces better
detection performance by leveraging knowledge of segmen-
tation even when the training datasets differ between tasks. In
the experiments on pedestrian and wild-bird data, our CNN
achieved a higher generalization performance compared to
that of the baselines.

This paper has the following contributions. (1) A new ar-
chitecture, the cross-connected CNN, is proposed for multi-
task learning. Convolutional layers that cross-connect two
single-task CNNs can model cross-channel and cross-layer
feature interaction between tasks. The proposed model is a
generalization of existing ones. (2) To our knowledge, we
make the first attempt to perform multi-task learning of object
detection and semantic segmentation using different datasets
between tasks.



Related work Although parameter sharing [1] is success-
ful in various tasks [2, 3, 4, 5, 6, 7, 8], the combinations of
tasks are based on either of the following two assumptions.
First, one task is auxiliary to the other, such as pose estima-
tion and action recognition [8] or facial landmark detection
and attribute prediction [6]. Second, one task has insufficient
training data and is thus helped by the annotations of the other
task, as in depth estimation and surface normal prediction [3].
In all of the studies, multiple tasks have the same training data
with multiple labels.

Focusing on multi-task learning of object detection and
semantic segmentation, MultiNet [15] incorporates three
single-task CNNs for classification, detection, and segmen-
tation by parameter sharing. UberNet [17] and BlitzNet [16]
aggregate activation maps from middle layers of a single CNN
via task-wise skip connections, as similarly done in [18], but
because all the task-wise streams use the activation maps
from the same single CNN, they are within the classical
paradigm of parameter sharing. We differ from them in two
respects. First, we construct a multi-task CNN by integrating
two single-task CNNs pre-trained on each task. Although
consuming more memory due to increased parameters, our
CNN can easily reuse existing networks. Second, we use
different training datasets between tasks, while the previously
discussed CNNss are trained on the same dataset.

Instance segmentation [19, 20, 21, 22] is also a candidate
task to combine with object detection, which can distinguish
individual object areas of the same class. However, fewer
annotations for instance segmentation are available than those
for semantic segmentation because more annotation effort is
required. Learning from partial annotation [22] can mitigate
this labor, but at the cost of segmentation accuracy.

Apart from multi-task learning, late-fusion-based output
refinement [23, 24] is promising for simultaneously improv-
ing multiple outputs from deep networks for multiple tasks.
This type of method is useful for correlated predictions, such
as segmentation and optical flow [23], and object and action
detection [24]. Those methods differ from the one in this pa-
per in their motivations, as their aim is to improve perfor-
mance by integrating two correlated outputs, while ours is to
improve generalization of feature-level representations.

2. CROSS-CONNECTED CNN

We explain our method by taking two tasks, Task A and B,
as examples. As shown in Fig. 2, we start with two single-
task CNNs and cross-connect their feature extraction layers
via convolutional layers.

Cross-connected layers Cross-connected layers are de-
signed to effectively share knowledge between the combined
tasks. The cross-connected layers are represented as a stack
of the basic unit, as illustrated in the dotted rectangle in
Fig. 2. It shows how the n-th unit receives input maps and
passes output maps to the n + 1-th unit. The unit consists of
original conv layers derived from single-task CNNs (drawn
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Fig. 2: We integrate two single-task CNNs using cross-connections.
Cross-connected layers are common to both tasks, and one-by-one
conv layers assign weights on useful information for the other tasks.
All conv blocks are composed of a conv layer and an activation func-

tion ReLU.

in blue and red blocks) and additional conv layers connecting
two CNNs (drawn in green and yellow blocks). The con-
necting conv layers have as many kernels as the number of
channels in the output maps of the other stream. The kernel
size is chosen to be one-by-one because the connection is
for knowledge transfering rather than feature extraction. The
connections represent linear transformation and learn the im-
portance of each activation map for the other task. We denote
input maps for n-th unit as 2 and =2 and the transforma-
tions learned by the original conv layers and ReL.U as f! and
fE, respectively. Assuming the cross-connection layers and
ReLU learn transformations g/ and g2, then =/ 1 and B o
are computed as

xh = (@) + 97 (fF (x7)
wl o = fP@l) + gl (f ().

Activation maps are added in an element-wise manner. The
second terms g/ (f5(xB)) and g2 (f2(x?)) have informa-
tion considered useful for one task on the basis of knowledge
obtained in the other task. In the first unit, both ¢ and =¥
are equal to an input RGB image.

6]

Task-specific layers Task-specific layers are prepared for
each task and trained to be specialized on task-wise output
generation. For example, object detection branches its net-
work into two paths, which are responsible for bounding box
regression and its classification. Semantic segmentation gen-
erates a map with pixel-wise labels. These layers are expected
to perform different functions between tasks, so their archi-
tectures must also be designed differently. Therefore, gener-
ally, they cannot be cross-connected due to the difference of
the shape of their activation maps. Task-specific layers take
feature maps from cross-connected layers and separately pro-
cess them without communication between tasks.

Training procedure The training of cross-connected CNNs
consists of two steps: single- and multi-task learning. For



the single-task learning, we first pre-train CNNs for each
task independently with individual datasets without cross-
connections. By pre-training single-task networks, we can
more easily utilize task-specific knowledge of one task for the
other task during multi-task learning. Each CNN is trained
by minimizing task-specific loss functions: L4 for Task A
and L g for Task B. To cross-connect them, we have to select
CNNs with a similar structure.

For the multi-task learning, having pre-trained single-task
CNNs, we start to train the cross-connected network. Lay-
ers in the network are initialized by weights from pre-trained
single-task networks, except for cross-connecting conv lay-
ers, which are initialized by random weights. They learn to
transform and transfer activation maps of one task to the oth-
ers after being updated by multi-task training.

As in [17], we use the sum of task-specific losses as a
multi-task loss. We denote it as L;; that satisfies the follow-
ing expression: Ly = L4 + ALp. All layers in the net-
work are updated in an end-to-end manner w.r.t. the gradient
of both loss functions. To enable multi-task learning in dif-
ferent datasets between tasks, we switch training datasets at a
constant interval. We compute a loss of only one task and set
the loss of the other task that has no annotations to zero. That
i8, Ly = L 4 for Task A, and L,;; = AL for Task B.

3. EXPERIMENTAL EVALUATION

To examine the effect of a cross-connected CNN on multi-
task learning of object detection and semantic segmentation,
we compare its performance with single-task CNNs as well as
those of existing models. We show that in these tasks, detec-
tion tend to be enhanced by rich contextual information from
segmentation. We particularly show that our CNN achieves
a higher generalization performance by leveraging more gen-
eral representations from multi-task learning. Specifically, we
present experiments on two domains: pedestrians and wild
birds.

Network implementation We first prepare two single-task
CNNS, one is specialized for object detection and the other
is specialized for semantic segmentation. We use a region
proposal network (RPN) [25] based on VGG16 [26] for de-
tection, which has been shown to be effective in pedestrian
recognition. As in [25], we use a smooth /1 loss for bounding
box regression and a cross-entropy loss for its classification.

For semantic segmentation, we construct a VGG16-based
pyramid scene parsing network (PSPNet) [27] by combining
the convolutional layers from VGGI16 and a pyramid pool-
ing module [27]. Although the original PSPNet is based on
ResNet, we use VGG16-based ones to clarify the effect of
multi-task learning. We use a cross-entropy loss summed over
all pixels. Those two single-task CNNs are also used as base-
lines for comparison.

Having two single-task CNNs, we construct the cross-
connected CNN. We cross-connect the first 10 conv layers
(convl_1-conv4_3) and assign the rest as task-specific lay-

ers. We set A as 1.0, following related studies [15, 16]. We
fine-tune the cross-connected network using the training pro-
cedure in Sec. 2. Because our architecture has more param-
eters than the single-task CNNs, performance improvement
may be natural. To clarify the improvement gained from mul-
tiple datasets from that gained by having more parameters,
we also fine-tune cross-connected CNNs only with a single
dataset as a baseline. These baselines are denoted as ‘single-
task cross-connected,” and they are fine-tuned only with a de-
tection dataset when evaluating detection and with a segmen-
tation dataset when evaluating segmentation.

We implement two types of multi-task CNNs as the multi-
task baselines to compare with ours: hard parameter sharing
networks, and a cross-stitch network [14]. Both of them are
applied to VGG16-based RPN and PSPNet and trained in the
procedure in Sec. 2. For parameter sharing, we test four types
of CNNs. Each of these four CNNs shares layers up to the first
(2 layers), second (4 layers), third (7 layers), and forth pooling
layer (10 layers), respectively. We refer to them as Share 1,
Share 2, Share 3, and Share 4, respectively, on the basis of
the index of the top pooling layer. A cross-stitch network,
denoted as cross-stitch, is implemented by replacing cross-
connected layers with scale layers, which learn channel-wise
multiplicative scaling factors.

Evaluation metrics We use log-average miss rate (MR) on
false positives per image (FPPI) within a defined range to
evaluate detection and use intersection over union (IoU) to
evaluate the segmentation accuracy of target areas.

Pedestrian detection and segmentation To evaluate the
CNNs, we first selected pedestrians because of their fre-
quency in public datasets. We used the Caltech Pedestrian
dataset [28], a collection of videos of urban road scenes taken
with VGA resolution, for detection. Following [28], we used
42,782 images (set 00—set 05) for training and 4,024 images
(set 06—set 10) for testing, among which we used the reason-
able subset that includes those taller than 50 pixels and >
65% visible. The test set includes 1,802 pedestrians in total.
MR was calculated on FPPI in [10~2, 10°] after filtering with
non-maximum suppression (NMS) with a threshold of 0.7.

The Cityscapes dataset [29] was used for semantic seg-
mentation. It consists of 5,000 images with 2048-by-1024
pixels. We used 2,975 images for training as in[29], and
500 validation images for testing because official test sets are
not disclosed. We focus on person and rider as target classes
among 19-class labels assigned to each pixel. We integrated
the two labels for label consistency with the Caltech. Details
of the training are provided in the supplementary material.

The KITTI [30] dataset was used to evaluate generaliza-
tion of the detector trained on the Caltech. It has 7,481 train-
ing images with 1224-by-370 pixels. Since ground truths of
the test set are concealed, we used the training set for testing.

Table 1 shows the evaluation results for pedestrians. The
cross-connected CNN achieves an MR of 19.38% on the Cal-



Table 1: Results of detection (MR) and segmentation (IoU) of
pedestrians on the Caltech, Cityscapes, and KITTI.

Table 2: Results of detection (MR) and segmentation (IoU) for
birds in the Kinki and Tomamae datasets.

Caltech | City || KITTI Kinki Tomamae

MR | IoU || MR MR | IoU || MR

Single-task (RPN) 21.47 - 55.29 Single-task (RPN) 18.59| - 41.35
Single-task (VGG16-PSPNet) - 76.68 - Single-task (VGG16-PSPNet) - 133.89 -

Single-task cross-connected (Det) 22.69 - 60.25 Single-task cross-connected (Det) |21.44| - 34.13
Single-task cross-connected (Seg) - 76.24 - Single-task cross-connected (Seg) | - |34.65 -

Share 1 22.15 | 75.23 || 50.85 Share 1 17.74 34.07 || 44.06

Share 2 2240 | 75.31 N/A Share 2 18.57(34.39 || 42.02

Share 3 23.33 | 75.47 N/A Share 3 16.95|34.78 || 39.56

Share 4 23.21 75.39 N/A Share 4 24.45|31.74|| 41.34

Cross-stitch 22.37 75.39 52.06 Cross-stitch 18.54|34.01 40.84

Cross-connected (proposed) 19.38 | 75.33 48.61 Cross-connected (proposed) 18.88 | 35.45 30.36

tech dataset, which is 2.09%-points better than the single-
task CNN. Single-task cross-connected networks, while hav-
ing the same number of parameters, do not surpass single-task
CNNs. Hard parameter sharing suffers from less flexibility,
and the cross-stitch network fails in utilizing the knowledge
because the interaction of activation maps is limited.

The IoU in the Cityscapes was not improved by multi-task
learning, though Caltech has nearly 10 times more instances
of persons than Cityscapes [29]. Information may be richer in
Cityscapes, as it has annotations for 19 classes, while Caltech
only has pedestrians. Because the bounding boxes have poor
information on region shapes, their contribution to segmenta-
tion, especially near region boundaries, is limited.

When evaluated on the KITTI dataset, the proposed cross-
connected CNN outperforms 6.68%-points than the single-
task CNN, and it achieves the best among the multi-task base-
lines. Table 1 also shows that the generalization performance
is not obvious from the in-domain testing. More results are
shown in the supplementary material.

Wild-bird detection and segmentation We also evaluated
the CNNs on their wild-bird detection and segmentation per-
formance. We aim to detect birds in landscape images to un-
derstand whether our method works for different types of real
scenes. Unlike the previous experiments, we trained CNNs
on the same dataset between the two tasks and verified the
generalization performance of detection with another dataset.

We used three datasets constructed for wide-area surveil-
lance of wild birds [31, 32, 33]. Two of them were collected
in the Kinki region in Japan and were used for the training and
testing of object detection [31] and semantic segmentation
[32]. The third is a dataset collected in Tomamae, Hokkaido,
and was used for checking the generalization performance of
object detection [33]. The Kinki dataset consists of 32,445
landscape images with 5616-by-3744 pixels taken under fine
weather. We used only the right half of them (2808-by-3744
pixels), which shows the surroundings of a wind turbine as
in [32]. We selected 138 images that have ground truths both
for detection and segmentation, where each pixel is annotated
into 4 classes: bird, forest, sky, and wind turbine. We used
40 images for training and 98 images for testing, which in-

clude 46 and 113 birds taller than 15 pixels, respectively. Due
to their sparse distribution, we set the NMS threshold to 0.1.
MR was calculated on FPPI in 1072, 102].

The Tomamae dataset consists of 2,222 images with 3840-
by-2160 pixels capturing landscapes under bad weather. It is
a more challenging dataset due to the images’ complex back-
grounds. We selected 980 images where relatively more birds
appear and used all of them for evaluating the detection per-
formance. 615 birds taller than 15 pixels were included in
the test. Evaluation conditions were the same as those in the
Kinki dataset. Training details are provided in the supplemen-
tary material.

Table 2 shows the evaluation results for the birds. When
tested in the Tomamae dataset, the cross-connected CNN
achieved a 10.99% better performance than that of the single-
task CNN and a 9.2% better performance than that of Share
3, the best of the multi-task baselines. Our CNN obtains a
higher generalization performance than parameter sharing
and cross-stitching. We do not consider the performance dif-
ference for detection in Kinki to be significant, as the total
number of birds tested is not statistically large.

4. CONCLUSION

We have proposed a cross-connected CNN, a multi-task CNN
consisting of two inter-connected single-task CNNs. In our
architecture, two single-task streams pass their activation
maps to each other via cross-connecting convolutional layers.
These layers enable activation maps to interact across their
channels and learn how to utilize the knowledge obtained
by task-wise pre-training. We evaluated the CNNs using
a combination of object detection and semantic segmenta-
tion. Experiments were conducted on two targets, pedestrians
and wild birds. In pedestrian detection and segmentation,
we demonstrated that our CNN outperforms baselines in
detection performance and leverages knowledge of segmen-
tation. In experiments with wild-birds and pedestrians, we
demonstrated that our CNN acquires more general knowl-
edge applicable to another dataset than has previously been
possible. Future work will focus on more flexible feature
re-usage using dense cross connections and its application to
other combinations of tasks.
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