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Abstract

We propose a method for estimating inherent surface
color robustly against image noises from two registered im-
ages taken under different outdoor illuminations. We formu-
late the estimation based on maximum likelihood manner
while considering both inter-pixel and intra-pixel relation-
ships. We define inter-pixel relationship based on stochas-
tic behavior of image noises and properties of outdoor il-
lumination chromaticity. We rely on the spatial continuity
of both surface color and illumination to define intra-pixel
relationship. We also propose to maximize the estimation
function in two step manner. Experimental results demon-
strate the significant improvement of the proposed method
in estimation accuracy compared to previous methods.

1. Introduction
Color is one of the most important features on computer

vision algorithms, from object recognition to estimation of
photometric properties. However, color information ob-
servable by camera is multiplication of both illumination
and surface color, hence we must estimate illumination in
the scene to infer surface color, which is invariant to illumi-
nation changes.

In general, this surface-color-estimation or color con-
stancy problem is ill-posed, because it has to estimate two
unknown parameters, i.e. surface color and illumination,

from one input pixel value. Most of the related methods
assume that a scene is lit by uniform illumination. But in
actual situation a scene includes multiple illuminations like
shadow and direct sunlight.

Unlike the aforementioned methods, Finlayson et
al. [11] solved this ill-posed problem by using the profile
of outdoor illumination, which can be linearized. Though
their algorithm is sensitive to inevitable image noises,
Kawakami et al. [22] extended Finlayson’s algorithm [11]
to remove the effect of the image noises in a deterministic,
not probabilistic, manner.

We propose a method to robustly estimate surface
color and illumination from the same input as Finlayson’s
method: two registered images captured under different
outdoor illuminations. We use both inter-pixel (i.e. pixel-
wise) and intra-pixel (i.e. spatial) relationships to make the
method robust to image noise. First, we formulate inter-
pixel relationship by exploiting knowledge of physics-based
vision and stochastic behavior of image noises. Next, we
formulate intra-pixel relationship by assuming spatial con-
tinuity in illumination as well as surface color. Then, we
verify the effectiveness of considering inter- and intra-pixel
relationships.

The contributions of this paper are the following:

1. We formulate color constancy problem in the proba-
bilistic framework. As a result, image noises can be
handled more simply.
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2. We propose a method for estimating plausible solution
of the higher order, non-parametric Markov random
field with complicated topology to solve this color con-
stancy problem.

The rest of this paper is organized as follows: after re-
viewing related work in Section 2, we describe the theoret-
ical background about color constancy and outdoor illumi-
nation in Section 3. In Section 4, we describe our surface-
color-estimation method. In Section 5, we show actual im-
plementation, such as modeling of image noises and out-
door illumination, and the optimization method which we
employ. In Section 6, we show the experimental results to
verify the effectiveness of the proposed method. Section 7
concludes this paper.

2. Related Work
Various methods for estimating an object’s surface color

have been proposed. Although several methods [24, 26, 33]
rely on the Neutral-Interface-Reflection (NRI) assumption,
that is, color of specular reflection assumes to be illumina-
tion color, we only deal with diffuse objects, which do not
have any specular reflection. As mentioned above, most of
the methods assume that a scene is lit by uniform illumina-
tion. These methods are roughly classified into two classes:
one class relies on heuristics and the other class uses train-
ing data and machine learning.

In the former, the Gray-World algorithm [4] assumes
that the average color in a usual scene is gray. In the
same analogy, the Gray-Edge algorithm [36] assumes that
the average edge difference in a scene is achromatic. The
Scale-By-Max method [25] adjusts intensity range in each
color channel so that the maximum intensities are the same.
Gijsenij and Gevers [16] proposed to adaptively select the
above color constancy algorithms depending on types of tar-
get images.

In the latter, the normalization approach, which is an
extension of the Scale-By-Max method, decides the scal-
ing factor considering the distribution of outdoor illumi-
nation [1, 14, 15]. Gamut mapping [15] maps the cur-
rent gamut, i.e., convex hull of color samples, to the pre-
learned gamut under standard illumination. Perspective
color constancy applies gamut mapping in the chromaticity,
not RGB, space [10]. Color-By-Correlation uses the corre-
lation between illumination and the observed color distri-
bution [12, 2]. Neural networks [6, 8, 5, 17, 27, 29, 35] di-
rectly learn and estimate the relationship between illumina-
tion and the color distribution. However, since these meth-
ods statistically estimate surface colors, images dissimilar
from the training images are difficult to handled.

A few methods estimate multiple illuminations from an

image. Ebner [9] applies the Gray-World algorithm sepa-
rately to each window on the image. Hsu et al. [18] assumes
that a scene consists of a small set of material colors. Unlike
these methods, our method estimates inherent surface color
and illumination in each pixel using maximum likelihood.

3. Theoretical Background
3.1. Illumination, Surface Color, and Pixel Intensity

The pixel intensity of a diffuse object is generally de-
scribed as:

IC =
∫

Ω

S(λ)E(λ)qC(λ)dλ, (1)

where λ represents some spectral wavelength. IC is the sen-
sor response and C (∈ {R,G,B}) indicates from which
filter (red, green, or blue) the response is obtained. S(λ)
is the surface spectral reflectance and E(λ) is the illumina-
tion spectral power distribution. qC(λ) is the three-element
function of sensor sensitivity. The sensor response is calcu-
lated by integrating over the visible spectrum Ω.

Like [11], by assuming that the camera’s sensitivity is
very narrow, i.e., regarded as the Dirac delta function, Equa-
tion (1) can be written as:

Ic = ScEc. (2)

We define the vector (SR, SG, SB) as surface color.

3.2. Outdoor Illumination

In this paper, we rely on the fact that outdoor illumina-
tion can be approximated by a black body radiator, which
has already been proved in [20, 13]. Planckian locus is the
path or locus that the color of an incandescent black body
would take in a particular chromaticity space as the black
body temperature changes. The spectral power distribution
of its radiation, B(λ), is formulated as Planck formula in
Equation (3).

B(λ) =
c1

λ5
(e

c2
λkT − 1)−1, (3)

where c1 = 3.7418 × 10−16 [Wm2], c2 = 1.4388 ×
10−2 [mK], λ is wavelength [m], and T is temperature in
Kelvin. By combining it with Equation (2), we can obtain a
camera response under outdoor illumination:

IC = aSCBC(T ), (4)

where a is a scaling value. Considering the inverse chro-
maticity space,

ic =
Ic

IB
(c ∈ {R,G}), (5)
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Figure 1. Overview of the proposed method. The two registered images taken under different outdoor illuminations are used as input. The
method estimates surface color and illumination by considering inter-pixel and intra-pixel relationships based on the maximum likelihood
manner.

which is employed in [11], the sensor response ic in the
space is formulated as:

ic = scbc(T ), (6)

where sc and bc(T ) are surface color and illumination in the
chromaticity space.

The important point is that the outdoor illumination is
parametrized by only one parameter T . We use the fact that
simultaneous equation system for the estimation is solv-
able, since there are four unknown variables (two illumina-
tion temperatures and one two-DOF surface chromaticity)
and four constraints obtained from the two registered im-
ages [23].

4. Proposed Method

4.1. Inter-Pixel Relationship

In this method, surface color is estimated from two reg-
istered images which are captured under different illumina-
tions. Since the images have already been registered, the
corresponding pixel of two images are observations of the
surface lit by different illuminations. Thus, there are two
inputs, I1, I2 and there are three unknowns, surface color S
and two illumination colors E1, E2 in each pixel.

We estimate these unknowns by maximum likelihood
estimation, since the statistical behavior of image noises,
rather than noise itself, is tractable. In detail, we max-
imize the posterior probability of p(S,E1, E2|I1, I2) for
each pixel.

This probability density function can be decomposed as
Equation (7) by Bayes’ theorem.

p(S,E1, E2|I1, I2)
∝ p(I1, I2|S,E1, E2)p(S,E1, E2). (7)

Since we can assume the independence of all the variables,
Equation (7) can be decomposed as Equation (8):

p(S,E1, E2|I1, I2)
∝ p(I1|S,E1)p(E1)p(I2|S,E2)p(E2), (8)

where p(S) is assumed to be uniform distribution.
The first and third terms in the right hand of Equation (8)

can be replaced with p(I|Ĩ(def= SE)). This means multipli-
cation of surface color and illumination corresponds to the
noise-free intensity Ĩ . This likelihood represents the image
noise profile, that is, the likelihood that the observed inten-
sity is I when the noise-free intensity is Ĩ .

4.2. Intra-Pixel Relationship

In this section, we propose the estimation method ro-
bust to image noise by using intra-pixel relationship. In
many cases, surface color and illumination can be smoothly
changed in the image. To use this assumption of spatial
continuity, we formulate the estimation as:

F = p({Si}, {E1i}, {E2i}|{I1i}, {I2i})
=

∏
i∈I

p(Si, E1i, E2i|I1i, I2i)
∏

j∈N(i)

p(Si, Sj)

·
∏

j∈N(i)

p(E1i, E1j)
∏

j∈N(i)

p(E2i, E2j), (9)

where i, j are positions on image coordinates, I is the set
of all the pixels on the image, N(i) is the set of four neigh-
borhood pixels of i, and p(Si, Sj), etc. represent spatial
dependency in either surface color or illumination space.

4.3. Maximization

Before estimating the surface color by maximizing the
posterior likelihood (Equations (8) and (9)), we consider the
following issues:
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Figure 2. Graphical model of the estimation. The estimation of il-
lumination E1i, E2i and surface color Si depends on input images
I1i, I2i and the four neighbors E1j , E2j and Sj .

• Which color space to use?

• Which method to use to maximize Equation (9)?

Unlike methods [11, 22], which employ the chromaticity
space, we employ the RGB space, since image noises come
up in the RGB space. Also, ambiguity about the scales of
surface color and illumination should be considered; the fol-
lowing equation holds for all the real value a.

S′E′ = (aS)(1/aE) = SE.

To solve this ambiguity, we assume
√

S2
R + S2

G + S2
B = 1.

Maximizing Equation (9) is equal to maximizing the
second order non-parametric Markov random field (MRF)
(Figure 2). And the number of variables is three times larger
than the number of pixels. Although to use the state-of-the-
art maximization methods, such as [31, 19, 30], is one of
the solutions, calculation time and memory consumption is
heavy even when the size of image is moderate.

We use the Iterated Conditional Modes (ICM)
method [3] to maximize Equation (9) in MRF. The
weakness of the ICM method is that it is easy to get trapped
at the local minima. But this weakness can be solved by
giving the appropriate initial guess, which can be obtained
by using Equation (8), i.e., pixel-wise maximization.

5. Implementation
5.1. Modeling of Outdoor Illumination

For modeling the distribution of outdoor illumination,
we took pictures of white reflectance target from sunrise to
sunset. White balance function of digital camera is turned

er

e
g

Figure 3. Illumination distribution obtained by actual measure-
ment. The distribution limits around the line.

off to prevent compensation of illumination. Figure 3 shows
illumination distribution in the inverse chromaticity space
in Equation (5). It supports the validity of approximating
illumination using one-degree line of the Planckian locus.

The probability density function of outdoor illumination
is defined by non-parametric Kernel density estimation [7],
as

p(E) = f(er, eg)

=
1

Nh

N∑
i=1

K

(
er − eri

h

)
K

(
eg − egi

h

)
,

K(x) =
1√
2π

e−
1
2 x2

, (10)

where K(x) is the kernel function, N is the total number
of illumination samples, and h is a smoothing parameter. In
this paper, h is empirically set to 0.05. Figure 4 shows the
probability density of illumination. Note that when calcu-
lating the probability density function, illumination parame-
ters in the RGB space is converted to that in the chromaticity
space.

5.2. Noise Measurement

As shown in [34, 32], noise distribution and variance de-
pend on levels of noise-free intensity. Thus, noise distribu-
tion is estimated at each intensity value. Suppose we have
a set of images of static scene taken from a fixed viewpoint
with the same camera parameters as input. Fluctuation in
each pixel among the images originates from image noise
only. Intensity histograms are made up at each pixel from a
set of images. The most frequently appearing intensity can
be assumed as a noise-free intensity. Noise distribution in
the entire images is constructed by merging them. Figure 5
shows noise distributions in several intensity levels. We ap-
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Figure 4. Probability density function of illumination.
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Figure 5. The noise distribution in the red channel. Noise profiles
depend on their intensity levels.

proximate the noise distribution as Gaussian distribution in
the estimation.

5.3. Spatial Dependency

As shown in Figure 2, we use the spatial dependency
of four neighborhood pixels in surface-color and illumina-
tion images. We use Gaussian distribution to represent this
dependency. Thus, the parameters of the dependency are
smoothness of surface-color and illumination images.

5.4. Optimization

We sequentially optimize Equations (8) and (9). For op-
timization of Equation (8), we use the Down-hill simplex
method [28]. Initial value of parameters are set by Fin-
layson’s estimation, or randomly.

For optimization of Equation (9), we begin with the
pixel-wise estimation, i.e., Equation (8), as initial guess and

use the ICM method [3]. This method maximizes the en-
ergy function by changing several (usually one) of the pa-
rameters while keeping the others fixed. This partial maxi-
mization is iterated until convergence of the function while
changing the unfixed parameters.

We use the Newton method to maximize Equation (9)
with one free parameter. We show the case in the maxi-
mization using E1i. The other cases are dealt with in the
same manner. We take the logarithm of Equation (9) and
then calculate its derivative to estimate parameters of ex-
tremum. All the terms but the third and fourth terms in right
hand of Equation (11) are simple quadratic forms after tak-
ing the logarithm and the derivative is easy to take. The
third and fourth terms are approximated as Taylor series of
p(E1i) around Et

1i, the estimation at the t-th iteration. The
maximization with Et+1

1i is done by solving Equation (9).

∂ ln(F )
∂E1i

=
∑

j∈N(i)

Et+1
1i − Et

1j

σ2
a

− St
i (I1i − St

iE
t+1
1i )

σ2
n

− P ′(Et
1i)

P (Et
1i)

− P ′′(Et+1
1i − Et

1i)P (Et+1
1i − Et

1i) − P ′(Et
1i)

P (Et+1
1i − Et

1i)2

= 0. (11)

The superscript t indicates the estimation in the t-th itera-
tion.

6. Experiments
We conducted experiments to quantitatively evaluate the

proposed method. We show the experimental results of the
two proposed methods (using pixel-wise relationship only,
and both pixel-wise and spatial relationships) compared to
the prior methods [11, 21] using images of the Gretag Mac-
beth Color Checker. We also show the result of another
outdoor scene.

6.1. Quantitative Evaluation

Method We used the images which include the Gretag
Macbeth Color Checker and white reflectance target in this
experiment. We took RAW images using DSLR camera
Nikon D60 and developed them by Adobe Photoshop Light-
room to uncompressed TIFF images without compensation
of illumination. ISO sensitivity of the digital camera was
fixed, since the noise distribution differs with ISO sensitiv-
ity.

For quantitative evaluation, we used 18 color patches of
the color checker and white reflectance target. To obtain the
ground truth, we set up the situation where illumination is
uniformly distributed and thus illumination effect are esti-
mated from the white reflectance target. To reduce image
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Figure 6. Input image pairs of the Macbeth Color Checker taken
under different outdoor illuminations.

noise effects, the ground-truth surface color is obtained by
averaging pixel values of each patches (30 × 30 pixels in
this experiment).

We define the difference between the estimated and
ground truth as the angular error in the RGB space:

R̃R + G̃G + B̃B
√

R2 + G2 + B2
√

R̃2 + G̃2 + B̃2
.

R̃, G̃, B̃, R,G,B are respectively the ground truth and the
estimated values in the RGB space. The angular error is
usually used for the evaluation in this research area.

Result We conducted experiments using five pairs of im-
ages which were taken under different illuminations. Fig-
ure 6 are several examples of the pairs. Figure 7 shows one
of the result of surface-color-estimation. From top to bot-
tom, rows of Figure 7 show the inputs, estimation by Fin-
layson’s [11] and Kawakami’s methods [21], estimation by
the proposed methods, and ground truth.

In addition, we quantitatively evaluated them by using
the average estimation error. As shown in Table 1, the es-
timation results of our methods have better accuracy com-
pared to the previous works [11, 21]. This result proves
that it is advantageous to handle image noises by maximum
likelihood manner and to handle spatial continuity by MRF
framework in estimation of surface colors.

Table 1. Mean RMSE of surface-color-estimation
Mean RMSE [deg]

Finlayson ’95 19.4
Kawakami ’09 11.3

Pixel-wise 8.4
Pixel-wise & spatial 5.7

Input 2Input 1

Surface (input1)Surface (Normalize)

Figure 8. The result of surface-color estimation in natural scene.
The top row shows input images taken at 11:00 (left) and 16:30
(right). The bottom left shows estimated surface colors. The image
at the bottom right is obtained from surface color estimation at the
bottom left by multiplying the brightness in input image 1.

6.2. Natural Scene

We conducted experiments with natural images, which
consist of various illuminations (i.e., shadow and direct sun-
light). Figure 8 shows the input and the result. The top row
shows input images taken at 11:00 (left) and 16:30 (right).
Their illuminations vary widely. The bottom left shows the
estimated surface colors. The image at the bottom right is
obtained from surface color estimation at the bottom left by
multiplying the brightness in input image 1. As shown in
the bottom left, even if the image consists of multiple illu-
mination, surface color is appropriately estimated.

7. Conclusion

We proposed a method for estimating object’s surface
color robustly against image noise from two registered im-
ages taken under different outdoor illuminations. First, we
formulated surface-color-estimation based on stochastic be-
havior of image noise and physics-based vision in the prob-
abilistic framework. Next, we formulated the spatial depen-
dency of surface and illumination in the MRF framework.
Then, we proposed to maximize the estimation function in
two step manner.
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Figure 7. The result of surface-color estimation. From top to bottom, inputs, estimation by Finlayson’s [11] and Kawakami’s methods [21],
estimation by the proposed methods, and ground truth are shown.

Our experimental results quantitatively demonstrated the
effectiveness of the proposed algorithm compared to the
previous methods. This result insists on the effectiveness of
considering both image noise effect and spatial consistency
to solve color constancy problem.

One of our future directions is to design a method to es-
timate only from a single image. To prepare the two reg-
istered images under different illuminations is sometimes
difficult. Another direction is to estimate surface color from
images which include interreflection or specular reflection.
We believe that the ability to estimate illumination at each
pixel is advantageous.
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