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Abstract: Bird’s-Eye View (BEV) representations are critical for providing a unified spatial scene understanding to au-
tonomous driving tasks. However, existing methods often struggle with a lack of transformation equivariance. This results
in artifacts on BEV feature maps that degrade the performance of downstream tasks. To address this issue, we propose a
regularization approach to enhance transformation equivariance through ego-vehicle and dynamic object motion transforma-
tions by aligning BEV features in the global coordinate system across consecutive frames and introduces a consistency loss
to penalize feature misalignment. Experiments on the nuScenes dataset demonstrate that the proposed approach effectively
reduces artifacts, stabilizes BEV representations, and improves the reliability of downstream tasks.
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1. Introduction

BEV (Bird’s-Eye View) representation in autonomous
driving provides an ego-vehicle-centered, 360-degree top-
down view of the vehicle and its surroundings, enhancing
perception and decision-making for safe and efficient au-
tonomous systems. The surroundings are represented as
grid cells containing high-dimensional feature values that
encode spatial and semantic information about the scene.
Since BEV feature maps are centered on the ego-vehicle,
the origin of the BEV coordinate system shifts with the ego-
vehicle’s updated global position during rotation or transla-
tion. As a result, features surrounding the ego-vehicle must
move consistently within the BEV map to maintain their
relative positions to the ego-vehicle.

However, existing approaches [3, 4] encounter the issue
for lack of transformation equivariance when generating
BEV features, leading to noise-like artifacts on BEV fea-
ture maps shown as Figure 1. The radial patterns centered
on the ego vehicle cause the surrounding features to appear
blurred or distorted. These artifacts indicate the feature po-
sitions in the BEV coordinate system do not align with their
actual physical locations. And we suppose that this issue
will degrade the performance of downstream tasks.

Figure 1. Legend of noise-like artifacts on BEV feature maps. The
left panel displays raw data from six vehicle-mounted cameras,
arranged as top-row (left-front, front, right-front) and bottom-row
(right-rear, rear, left-rear) views centered on the ego vehicle. The
right panel shows the BEV feature map generated by BEVFormer
[3] visualized using PCA in RGB format. Red block in the middle
indicates the ego-vehicle.

Going a step further, transformations occur over time as
the ego-vehicle moves. To achieve transformation equivari-
ance, the issue can be addressed by ensuring BEV feature
alignment across consecutive frames (i.e. temporal con-
sistency) under the ego-vehicle’s motion transformations.
Specially, for dynamic features, this alignment should con-
sider both the ego-vehicle’s motion and the objects’ own
motions, ensuring that features remain coherent and accu-
rately represented in the global coordinate system over time.

To this end, we propose a method to improve temporal
consistency for enhancing transformation equivariance by
enforcing alignment of BEV features with the global co-
ordinate system across frames through ego-vehicle and ob-
jects’ motion transformations.
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2. Method
We regularize the BEV feature maps to improve the tem-

poral consistency for transformation equivariance in BEV
representation. Our idea is applied to the partial pipeline of
UniAD [2], as depicted in Figure 2, which employs the off-
the-shelf BEV encoder from BEVFormer [3] to extract BEV
features from multi-view images and then feeds them into
decoders for downstream tasks. Unlike the original training
pipeline of UniAD, the regularization term is calculated us-
ing the BEV features of consecutive frames and is added to
the naı̈ve loss functions for tracking and mapping [2].

Figure 2. Pipeline for generating transformation equivariance pre-
served BEV features.

2.1. Data Pre-processing
The Figure 3 illustrates SE(2) transformations applied to

align BEV features of both the ego-vehicle and dynamic
objects in the global coordinate system. Raw images at t−
∆t are transformed to align with the global positions at time
t.

Figure 3. SE(2) transformations aligning BEV features of the ego-
vehicle and dynamic objects in the global coordinate system.

Static Feature Alignment. Static features remain station-
ary in the global coordinate system. Let P denote the global
position of a static feature. The ego-vehicle’s motion be-
tween t − ∆t and t is represented by the SE(2) transfor-
mation matrix Eego(t − ∆t, t). The static feature’s global

position P remains unchanged:

P′ = P.

The corresponding local positions in the ego-vehicle’s ref-
erence frame are:

p = E−1
ego,t−∆t ·P, p′ = E−1

ego,t ·P′.

The static feature maps at t−∆t and t are indexed by p and
p′, respectively:

F static
t−∆t(p) = F static

t−∆t(E
−1
ego,t−∆t ·P),

F static
t (p′) = F static

t (E−1
ego,t ·P′).

The temporal alignment for static features can be expressed
as:

F static
t−∆t(p) = F static

t (p′)

ensuring spatial consistency in the global coordinate sys-
tem.

Dynamic Feature Alignment. Dynamic features are in-
fluenced by both the ego-vehicle’s motion and the motion
of the dynamic object. Let P denote the global position of
a dynamic object at time t − ∆t, and P′ denote its global
position at time t. The position update is governed by the
transformation matrix Tobj, which describes the motion of
the dynamic object in the global coordinate system:

P′ = Tobj ·P.

The transformation matrix Tobj is defined based on the ob-
ject’s pose at t−∆t and t:

Tobj = Eobj,t ·E−1
obj,t−∆t,

where Eobj,t and Eobj,t−∆t are the object’s pose matrices in
the global coordinate system at times t and t−∆t, respec-
tively. The corresponding local positions of the dynamic
object relative to the ego-vehicle’s frame are given by:

p = E−1
ego,t−∆t ·P, p′ = E−1

ego,t ·P′.

The dynamic feature maps indexed by these positions are
expressed as:

F dynamic
t−∆t (p) = F dynamic

t−∆t (E−1
ego,t−∆t ·P),

F dynamic
t (p′) = F dynamic

t (E−1
ego,t · (Tobj ·P)).

The temporal alignment for dynamic features can be ex-
pressed as:

F dynamic
t−∆t (p) = F dynamic

t (p′)

ensuring spatial consistency in the global coordinate sys-
tem. This process is applied to each dynamic object individ-
ually according to their unique transformation information.



2.2. Consistency Regularization

The consistency loss measures the discrepancy between
the transformed features at time t − ∆t and the features at
time t in the global coordinate system. The loss is computed
over the overlapping region Moverlap between the two time
steps and is expressed as:

Lconsistency =
∑

p∈Moverlap

∥Ft−∆t(p)− Ft(p
′)∥22,

This formulation applies to both static and dynamic fea-
tures.

3. Experiment
Experimental Setup. Our experiments are conducted on
the nuScenes dataset [1], a large-scale benchmark for au-
tonomous driving that includes 1,000 driving scenes with
multi-view images captured by six cameras covering a 360°
field of view. Each scene lasts approximately 20 seconds,
with keyframes annotated at 2 Hz. The dataset provides an-
notations for ego-vehicle motion and 3D bounding boxes of
23 object categories.

The proposed method builds upon UniAD [2], a unified
pipeline integrating perception, prediction, and planning
tasks. Specifically, we focus on the perception task of 3D
object detection, using the BEV encoder from BEVFormer
[3] to transform multi-view image features into BEV fea-
tures. The detection head is inherited from Deformable
DETR [5], which predicts 3D bounding boxes based on the
BEV features. Our pipeline incorporates the proposed con-
sistency regularization during training, aiming to enhance
the temporal stability and transformation equivariance of
BEV feature maps.

Qualitative Results. Figure 4 demonstrates the impact
of the proposed consistency regularization on BEV feature
maps across consecutive frames (t−∆t and t). In the naive
model (left columns in each time step), noticeable artifacts
appear in the BEV feature maps, particularly in the red-
highlighted regions. These artifacts indicate instability in
BEV feature alignment across frames, primarily caused by
the loss of transformation equivariance. By incorporating
the proposed consistency loss, the regularized model (right
columns in each time step) produces BEV feature maps that
are significantly smoother and more stable.

Quantitative Results. Table 1 compares consistency met-
rics between our regularized approach and the baseline
UniAD. IDS (Identity Switches) measures ID mismatches,
FRAG (Fragmentations) counts trajectory interruptions,
TID (Track Initialization Duration) indicates the average
time to initialize a track, and LGD (Longest Gap Duration)
measures the longest time an object is lost. Lower values

Figure 4. Each column in the figure corresponds to consecutive
timestamps.

across these metrics indicate better tracking performance.
Our method reduces IDS and FRAG, improving temporal
consistency and trajectory continuity, while the decrease
in TID reflects faster track initialization. Although LGD
shows a slight increase, geometric consistency remains ac-
ceptable, demonstrating the effectiveness of our regulariza-
tion in stabilizing BEV features and enhancing tracking per-
formance.

Method IDS↓ FRAG↓ TID(s)↓ LGD(s)↓
UniAD 768 1146 1.72 2.59
Ours 720 998 1.60 2.71

Table 1. Comparison of consistency evaluation metrics with naive
method.

4. Future Work
While our method improves temporal consistency by in-

corporating transformation equivariance as a prior, we ob-
served a slight trade-off with detection performance, as
reflected in marginal declines in main metrics such as
AMOTA and AMOTP. This highlights the need for more
balanced regularization strategies that can simultaneously
enhance temporal consistency and maintain high detec-
tion accuracy. Moreover, the development of BEV-specific
data augmentation techniques tailored for end-to-end au-
tonomous driving pipelines, particularly for planning tasks,
remains a critical direction for practical deployment.
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