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Abstract Accurate object pose estimation from a single image is an important task for autonomous driving and manufacturing.
While most of previous studies use machine-learning based pose regressors, some employ an analysis-by-synthesis approach to
iteratively update the pose during inference. Without 3D models, the latter approach can employ novel-view synthesis networks,
but the images generated by the synthesizer may lack features essential for accurate pose estimation. In this study, we propose
GIRR: Generative Inference for object poses by Regressive-feature Reconstruction that leverages prior knowledge in a pre-trained
pose regressor to guide the training of the novel-view synthesis network so that generated images contain features essential for
pose estimation. At inference time, object pose is optimized with respect to the sequence of the image synthesizer and the pose
regressor. We demonstrate experimentally that our method outperforms existing high-performing regressors on ModelNet10-SO3
and ShapeNet. Code will be released upon acceptance.
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1. Introduction
Image-based object pose estimation is a long-standing computer

vision task, whose goal is to determine the spatial orientation (i.e.,
tilt, yaw, and pitch) of the object of known categories (e.g., car
and chair) relative to some reference frame [1]. This task is criti-
cal for various applications such as robotics, augmented reality, and
autonomous driving [2], [3].

Modern approaches of object pose estimation from a single im-
age mostly rely on deep networks, which can be divided into two
categories: direct approach [1], [4]–[17] and analysis-by-synthesis
approach [18]–[20]. The former approach directly predicts object
pose from an input image as a regression or classification task,
whereas the latter iteratively generates images of the object from
candidate view angles until the generated image matches with the
input image in some metric.

Formerly, analysis-by-synthesis methods [21], [22] had been ad-
vancing direct methods in accuracy; however, today analysis-by-
synthesis methods lag behind direct methods in various bench-
marks [14], [15]. We hypothesized that this is because effective
utilization of priors for pose estimation within the existing analysis-
by-synthesis approach has not been fully explored in this approach.

Although some analysis-by-synthesis approaches require object
3D models that limit real-world applications, recent approaches [18]
have replaced physics-based rendering with novel-view synthesis
networks (a.k.a novel-view synthesizer), enabling image synthesis
from a single image input without 3D models. Nevertheless, this
method introduces a notable issue. Images generated directly by neu-
ral networks, without the assistance of 3D models, often struggle to
maintain multi-view geometric consistency and may lack essential
characteristics crucial for accurate pose estimation. The absence of

such priors potentially hinders the effectiveness of the analysis-by-
synthesis approach in pose estimation.

In this paper, we propose an analysis-by-synthesis method, GIRR:
Generative Inference for object poses by Regressive-feature Re-
construction, that leverages the prior knowledge embedded in pre-
trained pose regressors. In GIRR, a pre-trained pose regressor is
used to guide the training of novel-view synthesis network in such
a way that the generated image and the input image share common
features in the regressor’s feature space. During inference, we as-
sess not only the photometric consistency (e.g., reconstruction and
perceptual losses) between synthesized and actual images but also
the alignment of key features for pose estimation, extracted by a
pre-trained pose regressor. This approach expects that even if the
appearances of generated images do not perfectly align with the in-
put image, the generated image sequence contains rich task-specific
features that yield sufficient resolution to identify object pose.

We conducted evaluations of our proposed method using the
ModelNet10-SO3 [1] and ShapeNet [23] datasets. The results
demonstrate that our pose-aware, analysis-by-synthesis approach
outperforms recent promising direct methods for 3D pose estima-
tion [14], [15].

2. Related Work
Image-based object pose estimation has significantly evolved over

the past few decades. In early studies, researchers focused on align-
ing 3D CAD models with image local features to estimate an ob-
ject’s pose [24], [25]. While effective, extracted key points directly
affect the accuracy of pose estimation in this approach. With the
development of deep learning, image-based object pose estimation
has shifted towards leveraging neural networks which are mainly
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Fig. 1: Conceptual diagram of inference phase in GIRR. GIRR employs an analysis-by-synthesis approach with a loss term that measures
discrepancy between regressor features of generated image and test image so that the novel-view synthesizer is encouraged to generate images
containing the features essential to identify the pose.

categorized into either a direct approach [1], [4]–[17] or an analysis-
by-synthesis approach [18]–[20].

An early direct approach utilizes CNNs to predict object
pose from images as a classification task [4], further developed
by [26], [27]. To overcome the difficulty in distinguishing small an-
gular differences, Mahendran et al. [7] proposes a refiner network to
enhance initial pose estimations. Recognizing that single-point esti-
mates struggle with objects having symmetrical orientations, several
recent studies have opted to predict distributions over orientations
in SO(3) [11]–[17]. For example, Klee et al. [14] applies SO(3)-
equivariance to predict distributions over 3D rotations from a single
image, while Liu et al. [15] incorporates rotation normalizing flows
for effectively representing arbitrary distributions on SO(3). Di-
rectly regressing pose from images is challenging; networks need
to acquire feature representations valuable for pose estimation. We
believe these representations are also beneficial in the analysis-by-
synthesis approach, which will be discussed later.

The analysis-by-synthesis approach has evolved from the tradi-
tional template-based method, using 3D model to render images
from multiple viewpoints to check consistency with the input im-
age for object pose estimation. However, basic template matching
struggles with complex scenarios, such as occlusions.

DeepIM [21] addresses these limitations by refining an object’s
pose from direct methods, leveraging a neural network to predict the
relative pose between the rendered image (from a 3D CAD model)
and the input image. Yet, the necessity of a 3D model for every
inference is a significant constraint. In response, NOCS [28] intro-
duces a method for reconstructing the 3D object model from RGB
images within a canonical coordinate frame, aligning this with input
depth measurements. LatentFusion [20] further eliminates the need
for 3D models by developing a 3D latent space representation from
multi-view images.

While the use of multiple views is effective, our objective is to
estimate the 3D pose from a single RGB image at inference. The
approach by Chen et al. [18], closely aligning with this goal, replaces
explicit 3D CAD model rendering with a novel-view synthesis net-
work. This network synthesizes images from various viewpoints
without using 3D models, aiding pose estimation. However, this
strategy’s limitation stems from its inability to ensure geometric
consistency in the synthesized images, due to the absence of strong
multi-view reasoning during image synthesis, and it may lack es-
sential characteristics crucial for accurate pose estimation. The ab-
sence of such priors could potentially hinder the effectiveness of the
analysis-by-synthesis approach in pose estimation. In this work, we
aim to improve pose prediction accuracy from high-performing re-
gressive models with an analysis-by-synthesis framework leveraged

Algorithm 1 Inference phase of GIRR framework.
Require: test image 𝐼; 3D pose 𝜙; novel-view synthesizer 𝑔; latent

feature 𝐿; regressor feature loss L𝑟 ; perceptual loss L𝑔; pixel
loss L𝑝 ; hyperparameter 𝜆; learning rate 𝜇

Ensure: 𝜙∗

while L has not converged AND the number of iterations is less
than the maximum do

𝐼′ ← 𝑔(𝜙, 𝐿)
L ← L𝑝 (𝐼′, 𝐼) + 𝜆L𝑟 (𝐼′, 𝐼) + (1 − 𝜆)L𝑔 (𝐼′, 𝐼)
𝜙← 𝜙 − 𝜇 𝜕L

𝜕𝜙

end while
𝜙∗ ← 𝜙

by a pre-trained pose regressor to overcome the former limitation.

3. Method
We propose a learning-based analysis-by-synthesis approach for

category-level 3D object pose estimation. Following the common
3 DoF setup as discussed in [1], [5], [8]–[17], our objective is to es-
timate 3D object pose 𝜙 ∈ R3 (specifically the tilt, yaw, and pitch
angles) relative to a category-specific reference frame from a sin-
gle RGB image containing a single object(1). Building upon the
methodology presented in [18], we train a single-image novel-view
synthesis network, which is designed to synthesize images from var-
ious viewpoints of the object in an input image, without requiring
access to instance-specific 3D CAD models. At inference time, the
synthesized images are compared to the target image and the errors
from this comparison are back-propagated through the network to
optimize the object’s pose.

While the convenience of CAD-free analysis-by-synthesis frame-
work is presented in [18], its significant drawback is the omission of
physical reasoning with 3D models, potentially leading to geometric
inconsistencies between the input and synthesized images. These
inconsistencies may result in not just imperfect shape but the deficit
of critical features essential for accurate pose estimation. To over-
come this issue, GIRR optimizes a novel-view synthesis network
with an explicit loss term so that the generated images retain details
crucial for pose estimation in a geometrically consistent manner.
Specifically, we enhance the consistency of features extracted by
a pre-trained object pose regressor (e.g., [14], [15]) during train-
ing and testing, on top of the conventional photometric consistency
between the generated and target images.

(1): Different angle representations can be used without loss of generality.
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Fig. 2: The diagrams of the proposed GIRR framework in detail. In the training phase (a), an encoder and a novel-view synthesizer are jointly
trained to minimize the regressive feature reconstruction loss and a conventional image reconstruction loss. In the inference phase (b), 3D pose
𝜙 is initialized by the regressor, and is updated multiple times until the sum of the loss terms is minimized. All deep modules are kept fixed in
this phase.

Figure 2 illustrates the overall flow diagrams for the training and
inference phases. Our framework incorporates three key modules:
the pose regressor and the novel-view synthesizer. We first provide
details of these components, followed by explanation of the training
and inference processes.

3.1 Building Blocks
Pose regressor. The pose regressor 𝑟 takes an image 𝐼 as input

and returns either a point estimate [1], [4], [7]–[10] or a probabilis-
tic distribution [11], [13]–[17] in 3D pose space. Similar to other
analysis-by-synthesis methods [21], [28], a pose predicted by the re-
gressor is used as the initial solution in the inference. We also use the
same pose regressor to compute the regressive-feature loss, which
will be defined later, during training and inference phases. When
this loss is ideally minimized, synthesized and target images share
the same features in the regressor’s feature space.

Owing to this usage, it is desirable for the regressor to extract
features from images that are critical for pose estimation. Partic-
ularly, the importance of 𝑆𝑂 (3) rotation-equivariant regressors for
pose estimation has been highlighted in recent studies [14], [15], en-
couraging us to utilize these regressors in our approach. The specific
methods of employing the regressor for training and inference phases
will be detailed later.
Novel-view synthesizer. The novel-view synthesizer takes a single
image of an object and the target view angle as input and returns
the image of the object from that view angle.(2) This synthesizer
consists of an image encoder and generator, where the encoder ex-
tracts instance-specific latent features and the generator generates an
image of the same instance from the target view angle.

Specifically, the encoder 𝑒𝜃𝑒 takes an image 𝐼 as input and re-
turns high-dimensional latent features 𝐿 ∈ R6𝑑 , specific to the ob-
ject of interest; i.e., 𝐿 = 𝑒𝜃𝑒 (𝐼). We divide these features into
two: 𝐿𝑒 ∈ R3𝑑 , and 𝐿𝑖 ∈ R3𝑑 . Then, we reshape 𝐿𝑒 into a 3 × 𝑑

matrix and apply 3D rotation matrix 𝑅(𝜙) ∈ 𝑆𝑂 (3) with the tar-
get angle 𝜙, to transform 𝐿 ↦→ {𝑅(𝜙)𝐿𝑒, 𝐿𝑖} before feeding them
to the generator. After training with this construction, 𝐿𝑒 embeds
view-conditioned information necessary for novel-view synthesis,
while 𝐿𝑖 carries object-specific information that is invariant to the
target pose. With the view-point independent part, abstract-level

(2): It is important to note that the novel-view synthesis and synthesizing images of ob-
jects of interest in novel poses system are equivalent within a category-specific reference
coordinate system.

information, such as semantics, can be potentially expressed.
The generator 𝑔𝜃𝑔 takes 𝑅(𝜙)𝐿𝑒 and 𝐿𝑖 as input, and synthesize

the image 𝐼′ from the viewpoint as

𝐼′ = 𝑔𝜃𝑔

( [
𝑅(𝜙)𝐿𝑒, 𝐿𝑖

]𝑇 )
. (1)

This equation can be rewritten in a short-hand form as follows,

𝐼′ = 𝑔𝜃𝑔 (𝑀 (𝜙)𝑒𝜃𝑒 (𝐼)), 𝑀 (𝜙) =
[
𝑅(𝜙) 03×𝑙
0𝑙×3 𝐸𝑙

]
, (2)

where 𝐸𝑙 represents the 𝑙-dimensional identity matrix, and 0𝑎×𝑏 is
𝑎 × 𝑏 zero matrix.

3.2 Training Phase
In the training phase, the encoder 𝑒𝜃𝑒 and generator 𝑔𝜃𝑔 of the

category-specific novel-view synthesizer is trained on a set of sam-
ples 𝜒. Each sample consists of an image pair and a target pose,
(𝐼 𝑗 , 𝐼𝑘 , 𝜙𝑘), where 𝜙𝑘 represents the true pose corresponding to
𝐼𝑘 , and 𝐼 𝑗 is the image of the same instance from a different view-
point. Then, given 𝐼 𝑗 and 𝜙𝑘 , the novel-view synthesizer is trained
to generate 𝐼𝑘 by solving the optimization problem as follows,

min
𝜃𝑒 , 𝜃𝑔

∑︁
( 𝑗 ,𝑘 ) ∈𝜒

∥𝑔𝜃𝑔 (𝑀 (𝜙𝑘)𝑒𝜃𝑒 (𝐼 𝑗 )) − 𝐼𝑘 ∥22

+𝜆∥ 𝑓𝑟 (𝑔𝜃𝑔 (𝑀 (𝜙𝑘)𝑒𝜃𝑒 (𝐼 𝑗 ))) − 𝑓𝑟 (𝐼𝑘)∥22
+(1 − 𝜆)∥ 𝑓𝑝 (𝑔𝜃𝑔 (𝑀 (𝜙𝑘)𝑒𝜃𝑒 (𝐼 𝑗 ))) − 𝑓𝑝 (𝐼𝑘)∥22. (3)

Here, 𝑓𝑟 and 𝑓𝑝 is the feature extractors of the regressor and the
pre-trained VGG [29] model, respectively. The hyperparameter
𝜆 ∈ [0, 1] is introduced to control preference of two regularization
terms. The first term is the reconstruction loss between the output of
the novel-view synthesizer and the target image in the pixel space.
The second term is the regressive-feature reconstruction loss, which
aims to make the image synthesizer to generate an image containing
the same regressive features as the input image. The last term a.k.a.
perceptual loss [30] is added to ensure that generated images have
semantically meaningful appearance.

3.3 Inference Phase
In the inference phase, for a given image 𝐼 of an instance from

a specific object category, we predict its corresponding pose by
solving the following optimization problem:
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𝜙★ = argmin
𝜙

∥𝑔𝜃𝑔 (𝑀 (𝜙)𝑒𝜃𝑒 (𝐼)) − 𝐼 ∥22

+𝜆∥ 𝑓𝑟 (𝑔𝜃𝑔 (𝑀 (𝜙)𝑒𝜃𝑒 (𝐼))) − 𝑓𝑟 (𝐼)∥22
+(1 − 𝜆)∥ 𝑓𝑝 (𝑔𝜃𝑔 (𝑀 (𝜙)𝑒𝜃𝑒 (𝐼))) − 𝑓𝑝 (𝐼)∥22. (4)

Here, we use the same 𝜆 as in the training phase. Note that all
the parameters of the modules are kept fixed during inference. The
simplified algorithm for the inference phase is shown in Algorithm 1.

As has been mentioned, the regressor is used to initialize the
pose 𝜙 before the test-time optimization to predict 𝜙★. In the case
of distribution prediction, we pick the highest peak and perform the
inference once.

4. Experiments
4.1 Experimental setup
Datasets. We used two datasets, ModelNet10-SO3 [1] and

ShapeNet [23]. ModelNet10-SO3 [1] is a dataset of synthetic im-
ages created by rendering ModelNet10 [31]. It contains a total of
4,899 object instances across 10 categories. The training data are
rendered with 100 different viewpoints for each object instance,
while the test data are rendered with 20 viewpoints for each. There
are no common object instances between the training and test sets.
We used about 10% of the training data as validation data to tune
hyperparameters. After hyperparameter tuning, the novel-view syn-
thesizer was trained with all the training data. The models were
evaluated using the test data.

ShapeNet [23] is a dataset of 3D models. We used the aero-
plane, car, and chair categories, which contain 4,045, 7,497, and
6,778 models, respectively. The image rendering procedure and the
proportions of training, validation, and test data are the same as in
Mariotti et al. [8].
Evaluation metric. We use the median angular error between
the predicted and the ground-truth 3D poses as an evaluation met-
ric. This metric is commonly adopted in the field of object pose
estimation [11], [13]–[17].
Baselines. Instead of training regressors from scratch, we intend
to use existing pre-trained pose regressors to see if our proposed
framework can further improve their performance.

On ModelNet10-SO3, we employed the two state-of-the-art re-
gressors as baselines: I2S [14] and Liu et al. [15]. Liu et al. adopts
normalizing flow that transforms a base distribution to target distri-
bution in the pose space. It has two versions based on the distri-
butions, and we chose the model with the Matrix Fisher distribu-
tion [11], since it shows a better performance. We also conducted an
ablation study using no regressive-feature loss. In this ablation, we
set 𝜆 = 0 in Eqs. (3) and (4). This allows us to evaluate the impact
of the regressive-feature loss on performance.

On ShapeNet, to the best of our knowledge, the only other work
that conducts experiments under the same settings is Mariotti et
al. [8]. Therefore, we employ the regressor by Mariotti et al. within
our proposed GIRR framework. The pre-training of the regressor
was conducted by us, following the procedure described in [8]. Also,
we conducted a comparison with and without the regressive-feature
loss.
Architectures. The novel-view synthesizer consists of image en-
coder 𝑒𝜃𝑒 and generator 𝑔𝜃𝑔 . The encoder 𝑒𝜃𝑒 is composed of five
blocks, where each block contains two convolutional layers, and an
additional convolutional layer. The kernel size of every convolution
is 3 except for the additional convolutional layer (i.e., kernel size is
4) and the stride of each second convolutional layer in a block is 2.
The generator 𝑔𝜃𝑔 consists of five blocks, where each block contains
upsampling and two transposed convolutional layers, and an addi-

Table 1: Median angular error (◦) on ModelNet10-SO3 [1]. Mean
values over 3 different seeds are reported. †: reproduced by us.

(a) Median angular error (◦) using I2S [14].

avg. avg. (w/o bath.)
I2S † 20.41 4.47

GIRR w/o reg-feature loss 20.25 4.27
GIRR (ours) 20.16 4.14

(b) Median angular error (◦) using Liu et al. [15].

avg. avg. (w/o bath.)
Liu et al. † 12.06 3.37

GIRR w/o reg-feature loss 12.03 3.33
GIRR (ours) 12.01 3.30

tional convolutional layer. The latent feature 𝐿 ∈ R6𝑑 mentioned in
Sec. 3.1 has dimension of 𝑑 = 8, 192.
Implementation details. The regressor is kept fixed throughout
the training and inference phases, while the novel-view synthesizer
is optimized in the training phase and kept fixed in the inference
phase. Throughout the training and inference phases on the two
datasets, Adam optimizer [32] was used. In the inference phase, the
estimate of 3D pose predicted by the regressor is used as an initial
value in an analysis-by-synthesis approach according to Eq. (4).

On ModelNet10-SO3, as I2S [14] uses ResNet50 [33] and Liu et
al. [15] uses ResNet101 as backbones, we used the features from se-
lected layer blocks, namely, conv2 x, conv3 x, conv4 x in [33], for
the regressive-feature loss. To enhance synthesis quality, we trained
a synthesizer per category, which is a common practice in regressive
approaches [9], [12]. In the training phase, the batch size was set
to 32. Each model was trained for 100 epochs. The learning rate
was scheduled by linear warm-up for first 10 epochs from 5 × 10−6

to 5 × 10−5 and cosine annealing from 5 × 10−5 to 5 × 10−6. The
hyperparameter 𝜆 in Eq. (3) was set to 1.0 in GIRR.

In the inference phase, when using I2S [14] as a regressor, the
learning rate was set to 1×10−4 (5×10−5) for the model trained with
𝜆 ≠ 0 (𝜆 = 0). When using Liu et al. [15] as a regressor, the learning
rate was set to 3 × 10−5. The maximum number of iterations was
200. The hyperparameter 𝜆 in Eq. (4) at test time was set to 1.0 in
GIRR.

On ShapeNet, the regressor by Mariotti et al. [8] consists of a
block of six convolutional layers and max pooling layers, followed
by two additional convolutional layers. We used the features from
the first four convolutional layers on the lower side for the regressive-
feature loss. In the training phase, the batch size was set to 64. Each
model was trained for 100 epochs. The learning rate was scheduled
by linear warm-up for 10 epochs from 1 × 10−5 to 1 × 10−4 and
cosine annealing from 1 × 10−4 to 1 × 10−5. The hyperparameter 𝜆
in Eq. (3) was set to 0.75 in GIRR.

In the inference phase, the learning rate was set to 1× 10−3. The
maximum number of iterations was 200. The hyperparameter 𝜆 in
Eq. (4) at test time was set to 0.75 in GIRR.

The computational cost is approximate, but training the novel-
view synthesizer on four Nvidia Tesla P100s concluded within two
days for each category of both datasets. Moreover, the inference time
for performing pose estimation on a single image is approximately
one minute.

4.2 Results
Quantitative results. We present the results of the median angular
error on ModelNet10-SO3 [1] in Table 1. The results using I2S [14]
and Liu et al. [15] as a regressor are shown in Tables 1a and 1b,
respectively. The term “avg.” represents the average value across
all categories. Since the bathtub category exhibited extremely large
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Fig. 3: Examples of generated images on ModelNet10-SO3 [1]. Top: test images. Middle: generated images with 𝜆 = 0. Bottom: generated
images using I2S [14] with 𝜆 = 1 (ours).

Table 2: Median angular error (◦) on ShapeNet [23]. Mean values
over 3 seeds are reported. †: reproduced by us.

avg. aeroplane car chair
Mariotti et al. † 5.60 5.94 4.15 6.70

GIRR w/o reg-feature loss 4.27 4.35 3.03 5.42
GIRR (ours) 4.23 4.25 3.00 5.45

errors due to its highly symmetric shape, the overall average may not
well represent the overall performance. Therefore, we also show the
average value for the nine categories excluding the bathtub as “avg.
(w/o bath.)”. We also present the results of the median angular error
on the ShapeNet [23] in Table 2.

These results show that the proposed GIRR framework demon-
strates superior performance on average to all regressors, I2S [14]
and Liu et al. [15] on ModelNet10-SO3 [1], and Mariotti et al. [8]
on ShapeNet [23]. Though the performance gain from the SOTA
method by Liu et al. is not very large, we observe clearer improve-
ments from I2S and Mariotti et al. The ablation of the regressive-
feature loss shown in Tables 1a), 1b) and 2 reveals that utilizing
the regressive-feature loss during inference brings performance im-
provement.
Qualitative results. Examples of generated images in experiments
using I2S [14] as a regressor are shown in Fig. 3. The top row shows
the test images, the middle row shows the images generated without
the regressive-feature loss (i.e., 𝜆 = 0 in Eqs. (3) and (4)), and the
bottom row shows the images generated using GIRR (𝜆 = 1) with

I2S [14] regressor. Comparing the middle and bottom rows qualita-
tively, it can be said that the bottom row (GIRR) better reconstructs
fine details, such as furniture legs and object boundaries. Thus, by
integrating the regressor’s feature-space error into the novel-view
synthesizer’s loss function, the synthesizer can produce images with
more details that help regressor to better estimate poses.

Examples of generated images in the experiments on ShapeNet
are shown in Fig. 4. Again, the top, middle, and bottom rows show
the test images, the images generated without the regressive-feature
loss (i.e., 𝜆 = 0), and the images generated using GIRR with Mari-
otti et al. [8] regressor. Similar to the case of ModelNet10-SO3, fine
details are better reconstructed with our GIRR framework.
Analysis on the regressive-feature reconstruction loss. To fur-
ther analyze our method, we validated our hypothesis that the novel-
view synthesizer, when trained with our regressive-feature loss, is
capable of synthesizing images containing features crucial for the
object pose regressor. Specifically, we input a pair consisting of an
image and its corresponding 3D pose into the synthesizer, trained
both with and without the regressive-feature loss, to generate an
image from the same viewpoint. This image is then fed into the re-
gressor to predict the pose. Subsequently, we calculate the angular
error between the predicted and input poses. We present the re-
sults of the median angular error evaluated on the ModelNet10-SO3
dataset [1] based on Liu et al. [15] in Table 3. The term “avg.” repre-
sents the average value across all categories, and “avg. (w/o bath.)”
represents the average value across all categories except bathtub.
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Fig. 4: Examples of generated images on ShapeNet [23]. Top: test images. Middle: generated images with 𝜆 = 0. Bottom: generated images
using Mariotti et al. [8] with 𝜆 = 0.75 (ours). Each column corresponds to a different test case.

Table 3: Median angular error (◦) for generated images on
ModelNet10-SO3 [1]. Mean values over 3 different seeds are re-
ported. avg. avg. (w/o bath.)

GIRR w/o reg-feature loss 75.94 68.41
GIRR (ours) 8.35 8.40

The results of this experiment demonstrate that the use of our
regressive-feature loss significantly improves the prediction accu-
racy when regressors are applied to the generated images. Con-
versely, this suggests that images generated by a novel-view synthe-
sizer trained without this loss do not contain sufficient information
for the regressor to accurately predict the pose, supporting our hy-
pothesis.

5. Conclusion
This work introduces a new analysis-by-synthesis method for

category-specific, image-based 3D object pose estimation that does
not require 3D CAD models of the objects. To overcome the limited
performance caused by geometrically inconsistent novel-view syn-
thesizers, we propose a method that encourages the synthesizer to
generate images with features crucial for accurate pose estimation
and to infer the poses based on these features. Our method was

validated on both the ModelNet10-SO3 and ShapeNet datasets.
The current challenges include the evaluation of our proposed

method being limited to synthetic data and the predictions being
confined to 3DOF, rather than the more practical 6DOF. Extending
our theoretically proven concepts to more realistic problem settings
in future work is an important task. Additionally, one inherent
challenge associated with the analysis-by-synthesis approach is its
significantly slower inference speed when compared to direct meth-
ods. This discrepancy in processing speed could potentially restrict
its application in real-time scenarios, where immediate responses
are crucial. Addressing this issue entails the complex and demand-
ing task of enhancing the efficiency of novel-view synthesis itself.
Despite these hurdles, the field is active in developing more efficient
synthesis methods and we are optimistic about the issue.
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Appendix
1. Ablation analysis
We investigated how much GIRR can improve the initial value of

pose predicted by the regressor. The difference between the angular
error predicted by the I2S [14] regressor and the angular error pre-
dicted by GIRR is shown in Table A·1. Each column corresponds
to a range to which the angular error predicted by the regressor be-
longs. For example, a value with an angular error of 3◦ predicted by
the regressor is included in 0◦ to 5◦. When a number in the table is
positive (negative), our GIRR improves (deteriorates) the final pre-
diction accuracy compared to the initialization. Our proposed GIRR
framework consistently reduces the angular error in all ranges com-
pared to I2S and naive GIRR without regressive-feature loss. This
demonstrates that GIRR can fine-tune the regressor’s prediction to
improve prediction accuracy to some extent.

A histogram of differences in angular error produced by the re-
gressor I2S [14] and the angular error produced by GIRR is shown
in Fig. A·1. Figure A·1 (a) represents the GIRR without regressive-
feature loss (𝜆 = 0 in Eqs. (3) and (4)), and Fig. A·1 (b) represents
our proposed GIRR framework (𝜆 = 0.5 in Eqs. (3) and (4)). Blue,
green, and red bars indicate the ranges of angular error produced
by the regressor: 0◦ to 5◦, 5◦ to 10◦, and 10◦ to 15◦, respectively.
Positive (negative) difference in angular error means that GIRR im-
proves (deteriorates) the final prediction accuracy compared to the
initialization. In both Fig. A·1 (a) and (b), it is clearly observed that
the distributions lean toward positive side for 0-10◦, meaning that
overall the initial predictions are effectively corrected. Comparing
Fig. A·1 (a) and (b), it can be seen that slightly more population
reside in the positive side in (b), that is, the overall angular error has
been further reduced.
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(a) GIRR w/o reg-feature loss
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(b) GIRR (ours)
Fig. A·1: Histogram of the difference in angular error (◦) between
the pose with I2S [14] and the pose with GIRR over all categories
with one trial. (a) shows GIRR without regressive-feature loss (i.e.,
𝜆 = 0 in Eqs. (3) and (4)). (b) shows our GIRR with with regressive-
feature loss (i.e., 𝜆 = 1.0 in Eqs. (3) and (4)). Blue, green, and red
bars indicate ranges of angular error predicted by the regressor: 0◦
to 5◦, 5◦ to 10◦, and 10◦ to 15◦, respectively. Positive (negative)
values in x-axis means that GIRR improves (deteriorates) the final
prediction accuracy compared to the accuracy of regressor alone.
The larger the difference in angular error is, the smaller the angular
error becomes by GIRR.

Table A·1: The difference in angular error (◦) between the poses with
I2S [14] and the poses with GIRR (top: 𝜆 = 0, bottom: 𝜆 = 1.0) over
all categories. Means are taken over three different seeds. Positive
(negative) values indicate that GIRR improves (deteriorates) the per-
formance in predicting 3D poses. Our GIRR consistently improves
I2S and GIRR without regressive-feature loss performances when
I2S absolute error is in 0-5◦, 5-10◦ and 10-15◦ ranges.

0◦ to 5◦ 5◦ to 10◦ 10◦ to 15◦

GIRR w/o reg-feature loss 0.18 0.28 0.21
GIRR (ours) 0.28 0.56 0.40
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