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Abstract. Quantization of neural networks enables faster inference, re-
duced memory usage, and lower energy consumption, all of which are
crucial for deploying AI algorithms on devices. However, quantization
may degrade performance compared to full-precision models as precision
decreases. While prior research has primarily focused on uniformly quan-
tizing network weights and activations, capturing the long-tail distribu-
tions of these quantities imposes a challenge. To address this issue, this
paper introduces a non-uniform learned step-size quantization (nuLSQ)
approach. It optimizes individual step sizes for quantizing weights and
activations. Evaluations on CIFAR-10/100 and ImageNet datasets, using
ResNet, MobileNetV2, Swin-T, and ConvNeXT with 2-, 3-, and 4-bit pre-
cisions, demonstrate that nuLSQ outperforms other quantization meth-
ods. The code is available at https://github.com/DensoITLab/nuLSQ.
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1 Introduction

Deep learning has improved model performance across a range of applications
such as image classification [8, 14, 51], object detection [47, 48], speech synthe-
sis [41], and language translation [52]. In these applications, large over-parameterized
models can generally achieve high performance [60], but they require huge com-
putational costs during inference. Compact models that solve the same tasks
with higher inference speed, lower memory footprint and lower energy consump-
tion are in high demand especially for low-end edge devices.

Aiming at speeding up inference with low memory consumption and little
performance loss, methods of neural network compression and acceleration have
been introduced, such as knowledge distillation [3,16,24,29,56,59], network prun-
ing [15,19,35], and network quantization [5,6,9,10,30,32,45]. This work focuses
on neural network quantization given its capability of reducing the number of
floating-point operations and memory footprint by replacing real-valued weights
and activations with integer-valued ones. Although a quantized network has an
inherent problem of quantization error, training of quantized networks with little
performance loss is becoming feasible [6, 9, 10,22,61].

https://github.com/DensoITLab/nuLSQ
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Fig. 1: Distributions of activation in ResNet-20 before quantization (upper) and after
uniform quantization by LSQ (lower left) and non-uniform quantization by our method,
nuLSQ (lower right). Our nuLSQ, which has multiple learnable step sizes, acquires
finer/coarser step sizes in the activation range having higher/lower distribution, which
leads to higher information entropy H.

A high-performing method referred to as Learned Step-Size Quantization
(LSQ) [9] utilizes back-propagation with approximate gradients using the straight-
through estimator (STE) [4] to optimize both model weights and step sizes,
which define different quantization levels for weights and activations. In LSQ,
weights in the same layer share a common step size, and activations do like-
wise. For example, with 4-bit quantization in LSQ, there are 16 discrete levels
that are equally spaced by the learned step size within a layer. However, this
uniform-step quantization imposes limitations on model expressivity, given that
the distributions of weights and activations in neural networks are typically
highly non-uniform [12,22,39,53,55,61].

In this regard, researchers have been exploring non-uniform quantization
techniques to address the limitations of uniform quantization [28, 45, 61]. As
illustrated in Fig. 1, non-uniform quantization schemes optimize multiple step
sizes within a layer, allowing quantization levels to be unevenly spaced. This en-
ables the intervals to better adapt to the distribution of data, resulting in greater
expressive capabilities. This approach potentially maintains a higher information
entropy because quantization patterns are less biased. Due to its superior ex-
pressivity, non-uniform quantization for neural networks compression tends to
achieve better performance than its uniform counterpart. However, model per-
formance does depend on non-uniform quantization settings, and finding the
best practice is an open issue.

To this end, we propose a method called non-uniform Learned Step-Size
Quantization (nuLSQ), where multiple step sizes within a layer are individ-
ually optimized according to their step-size gradients based on the straight-
through estimator (STE) [4]. In contrast to LSQ, nuLSQ optimizes step sizes
non-uniformly to better preserve the original long-tailed data distribution ob-
served in weights and activations. Different from existing non-uniform quan-
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tization methods, nuLSQ has no explicit or implicit constraints in designing
piecewise-constant increasing non-uniform quantizers. Evaluations of nuLSQ com-
pared to various baseline methods on CIFAR-10, CIFAR-100, and ImageNet [7]
provide supportive evidence that the proposed scheme yields high generalization
performance. Our contributions are summarized as follows:

1. We propose nuLSQ for training non-uniform step sizes to quantize weights
and activations with the desired precision. Unlike existing non-uniform quan-
tization methods, nuLSQ optimizes individual step sizes independently, with-
out imposing constraints on the quantizers. With this construction, nuLSQ
can potentially generate arbitrary quantization levels to leverage network
expressivity.

2. We found that our method becomes more pronounced as the bit-width de-
creases. Particularly in MobileNetV2, this feature is significant, resulting in
an 8% improvement in state-of-the-art top-1 accuracy at 2 bit. In addition
to MobileNetV2, our method achieves the highest accuracy among the ex-
isting quantization-aware training (QAT) methods across 2, 3, and 4-bits for
ResNet-20 and ResNet-56 on CIFAR10.

3. Furthermore, in fair comparisons with LSQ in ResNet-20 on CIFAR100,
and Swin-T and ConvNeXT on ImageNet as well as other existing methods
including LSQ on ResNet-18, our method consistently achieves the highest
accuracy.

2 Related Work

Extensive research has been undertaken to enhance the efficiency of neural net-
work models in terms of reducing latency, memory footprint, and energy con-
sumption with little sacrifice in the generalization ability. There are largely four
types of approaches: efficient architecture search [17,18,49,51] equipped with au-
tomated machine learning (AutoML) [11,44,54], knowledge distillation [3,16,24,
29,56,57,59], network pruning [15,19,35], and network quantization [5,6,9,10,45].
Among these, we describe the related work of network quantization below. It is
also worth mentioning that neural network quantization synergizes well with
other compression techniques: Previous studies such as QKD [24], LSQ [9],
PROFIT [42], and N2UQ [34] have highlighted the effectiveness of combining
knowledge distillation with quantization. This collaborative approach boosts the
performance of compressed models.

Neural network quantization replaces the entire or a large portion of real-
valued weights and activations by coarsely discretized weights and activations.
By drastically reducing the number of floating-point variables and operations,
a quantized network yields fast inference with reduced memory usage. Unlike
other network compression techniques mentioned earlier, network quantization
can compress the original model significantly without any architectural modifi-
cations. Quantization of a trained model inevitably shifts the model parameters,
thereby causing deviation from the (semi-)convergence point attained during
training with floating-point precision. Hence, fine-tuning network parameters
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Fig. 2: Behaviors of quantizers in existing non-uniform methods and our method at
3-bit.

through quantization-aware training (QAT) is generally required for achieving
desired model performance under low-bit precision.

Despite the effectiveness of the QAT, optimization of the quantization pa-
rameters remains challenging, particularly with extremely low-bit precision. The
primary challenge comes from the discretization of the parameters or activations
by its quantizer. A quantizer, which is essentially a piece-wise constant function,
has zero derivatives almost everywhere; therefore, the adoption of gradient-based
optimization is not straightforward.

Straight-Through Estimator (STE). A naive way to avoid the problem is
to relax the quantizer to a continuous function and gradually revert to the orig-
inal one [10,23]. A simpler way is to replace the derivative of the quantizer with
that of the identity function with a clipping threshold in the backward pass only,
known as STE [6, 9, 63]. Despite the issue of the gradient mismatch, employing
STE as a proxy of its gradient has been shown to be an effective approach em-
pirically [6, 9, 22, 55, 61, 63, 64] and theoretically [50, 58]. Using STE, many prior
studies have attempted to optimize the uniform/non-uniform quantizer itself.

Uniform Quantization. Uniform quantization involves the mapping of floating-
point values to quantized values that are uniformly spaced. PACT [6] first at-
tempted to train the uniform quantization function in activations characterized
by the clipping threshold. LSQ [9] achieves higher accuracy for models in which
both weights and activations are quantized by effectively utilizing STE and train-
ing uniform step sizes. LSQ is further improved by LSQ+ [5] that can be applied
to the quantization of activations other than ReLU function like swish [46] and
h-swish [17] functions. QIL [22] and N2UQ [34] perform uniform quantization
following some non-linear transformation. QIL utilizes a trainable power func-
tion, while N2UQ achieves this directly by employing a quantization function
that equalizes non-uniform intervals.

Non-Uniform Quantization. Non-uniform quantization involves the map-
ping of floating-point values to quantized values that are non-uniformly spaced.
LQ-Nets [61] has non-uniform quantization levels, where the weights and activa-
tions are decomposed into a quantizer basis and binarized matrix by minimizing
the quantization error. Due to the property of its decomposition, the quantization
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levels are constrained to have a periodic structure (Fig. 2b). APoT [28], a gen-
eralization of the log quantization [39], achieves efficient and hardware-friendly
non-uniform quantization levels by constraining its base structure to a sum of
powers of two and training only the clipping threshold (Fig. 2a). LCQ [55] gives
less-constrained quantization levels by transforming uniform step-sizes to non-
uniform ones with learnable piecewise-linear monotonically-increasing functions
(Fig. 2c). Despite its seemingly higher number of parameters, the deformabil-
ity of its quantizer is practically limited by implicit constraints embedded in the
piecewise linear functions with the specific parametrization and number of joints.
On the other hand, our method nuLSQ, a non-uniform extension of LSQ, trains
non-uniform step sizes, or equivalently non-uniform quantization levels, directly
without any transformations or constraints. Therefore, our method has the po-
tential to achieve arbitrary quantization levels within a given precision through
optimizing the individual step sizes in an independent fashion (Fig. 2d).

Simluated Quantization. When it comes to quantized neural network de-
ployment, there are generally two widely adopted approaches: integer-only infer-
ence [20, 30, 31] and fake quantization. Integer-only inference performs all com-
putations under low-bit precision, while fake quantization simulates its effects by
quantizing only weights and activations while floating-point operations partially
remain. Fake quantization we adopted is widely investigated in the field of the
model quantization because of its simple implementation [9, 28,32,45].

Hardware implementation in non-uniform quantization We consider
two ways to deploy our non-uniform quantization: (i) mapping to step sizes
hardware-friendly utilized in log quantization [39] and APoT [28], and (ii) using
Look-Up Tables (LUTs) [55]. (i) For example, when considering 4 bits and map-
ping the step sizes learned by our method into 2 additive power-of-two terms
in the multiplier, the non-uniform quantization is approximately twice as fast
as the uniform quantization in multiplication [28]. (ii) When targeting FPGAs,
LUTs are preferred: LUTs offer superior parallelism compared to DSPs for mul-
tipliers even for uniform quantization below 8 bits [26]. Hence, LUTs are the
preferred choice for both uniform quantization and non-uniform quantization on
FPGA. The sizes of the LUTs for non-uniform quantization are estimated to be
reasonably small [55].

Distributions of weights and activations. It has been empirically ob-
served that weights and activations of a layer in a trained real-valued DNN tend
to have a long-tailed distribution [12,39,61]. Their distributions are far from the
uniform distribution and have a peak near the origin. Particularly, the distribu-
tion of the activation has a strong peak at zero due to the ReLU function, and
decays rapidly as it moves away from the origin, while it continues up to large
values as illustrated in the top figure of Fig. 1. When quantizing the activation
with uniform quantizers such as LSQ, the quantized values near zero tend to
appear more frequently, and the values near the largest value tend to appear
less frequently. This strong bias likely decreases the information entropy of the
quantized patterns, potentially restricting the network’s descriptive ability.
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Fig. 3: The 2-bit quantizers for activations used in LSQ and nuLSQ. Note that Qn = 0,
Qp = 3. (a) Uniform quantizer with shared step size s. (b) Approximate gradients of
the uniform quantizer with respect to s. (c) Non-uniform quantizer with individual
step sizes s1, s2, and s3. (d) Approximate gradients of the non-uniform quantizer with
respect to s1 (blue), s2 (orange), and s3 (green).

3 Proposed Method

3.1 Preliminaries: overview and reformulation of LSQ

Since our proposed method (nuLSQ) is closely related to LSQ, we start with an
overview of LSQ. Its uniform quantizer QLSQ(·) depicted in Fig. 3a is given by

QLSQ(x, s) =
⌊
clip

(x
s
,−Qn, Qp

) ⌉
s =


−Qns, x/s ≤ −Qn

⌊x/s⌉s, −Qn < x/s < Qp

Qps, x/s ≥ Qp

(1)

where x is either the input value or the weight, s denotes the step size, and
Qp and Qn are non-negative integers specifying the upper and lower bounds of
the quantization level, respectively. ⌊·⌉ is the round operator and clip(x, n, p)
returns x if x is within [n, p], n if x is below n, and p if x is above p. For b-bit
weight quantization, Qn = 2b−1 and Qp = 2b−1 − 1. For b-bit ReLU activation
quantization, Qn = 0 and Qp = 2b − 1.

In a strict sense, one cannot optimize a quantized network with gradient
descent because the gradient of the rounding operator is zero everywhere except
for non-differentiable points. To overcome this issue, STE is used to replace the
gradient of ⌊x/s⌉ with that of x/s in the backward pass. According to the above
procedure, the step-size gradient depicted in Fig. 3b is obtained as

∂QLSQ

∂s
(x, s) =


−Qn, x/s ≤ −Qn

⌊x/s⌉ − x/s, −Qn < x/s < Qp

Qp, x/s ≥ Qp.

(2)

The uniform quantizer in Eq. (1) can be rewritten by using a linear combi-
nation of the unit step function σ(·),

QLSQ(x, s) =


−

Qn∑
n=1

sσ
(
−x− ns+

s

2

)
, x < 0

Qp∑
n=1

sσ
(
x− ns+

s

2

)
. x ≥ 0

, (3)
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where Qn, Qp are assumed to be positive integers. For Qn = 0 and Qp > 0,
(e.g., ReLU activation quantization), QLSQ(x, s) is defined as 0 for x < 0, while
the above equation applies for x ≥ 0. The derivative with respect to the step
size using STE for each step function coincides with Eq. (2) as shown in detail
in the supplementary material. This reformulation is part of our contribution,
addressing the original derivation’s lack of capacity for extension to unequal
intervals.

3.2 nuLSQ: Non-Uniform Learned Step-Size Quantization

We propose nuLSQ that jointly optimizes weights and multiple step sizes of
quantized weights and activations as illustrated in Fig. 3c. When approximat-
ing a long-tailed distribution with samples having quantized patterns, the non-
uniform quantization scheme generates less redundant quantized patterns than
the uniform counterpart. Therefore, the expressivity is improved. By replacing
the common step size s in Eq. (3) with sets of step sizes that can be moved
individually in the positive range {si| i = 1, . . . , Qp}, and in the negative range
{s′i| i = 1, . . . , Qn}, the non-uniform quantization function can be obtained as

QnuLSQ(x, {si}, {s′i}) =


−

Qn∑
n=1

s′nσ

(
−x−

n−1∑
m=1

s′m +
s′n
2

)
, x < 0

Qp∑
n=1

snσ

(
x−

n−1∑
m=1

sm +
sn
2

)
. x ≥ 0

(4)

As in the uniform quantization case, QnuLSQ(x, {si}, {s′i}) for x < 0 is replaced
with 0 for the unsigned integer range (Qn = 0 and Qp = 2b − 1).

Their approximate gradients are obtained using STE:

∂QnuLSQ(x, {si}, {s′i})
∂sk

=


0, x <

∑k−1
m=1 sm

Dk(x, {si}),
∑k−1

m=1 sm ≤ x <
∑k

m=1 sm

0,
∑k

m=1 sm ≤ x <
∑Qp

m=1 sm

1,
∑Qp

m=1 sm ≤ x

(5)

∂QnuLSQ(x, {si}, {s′i})
∂s′k

=


−1, x < −

∑Qn

m=1 s
′
m

0, −
∑Qn

m=1 s
′
m ≤ x < −

∑k
m=1 s

′
m

Bk(x, {s′i}), −
∑k

m=1 s
′
m ≤ x < −

∑k−1
m=1 s

′
m

0, −
∑k−1

m=1 s
′
m ≤ x

(6)

with Dk(x, {si}) = σ
(
x−

∑k
m=1 sm + sk

2

)
− x−

∑k−1
m=1 sm
sk

and Bk(x, {s′i}) =

−σ
(
−x−

∑k−1
m=1 s

′
m +

s′k
2

)
− x+

∑k−1
m=1 s′m
s′k

. Using the gradients, all step-sizes {si}
and {s′i} are updated independently.

Note that if all the step sizes {si} and {s′i} are set to be equal, the gradient
in Eq. (5) leads to the uniform step-size gradient used in LSQ. This implies that
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the estimated gradient of nuLSQ (see in Fig. 3d) inherits the characteristic of
the one in LSQ [9].

Similar derivations have been discussed in N2UQ [34] for achieving a sort
of uniform quantization in activations, which equalize the non-uniform intervals.
Our derivation, however, is not restricted to uniform outputs, thereby enhancing
the flexibility of the quantizer, and increasing its expressive capacity. Moreover,
our derivation can be applied to both weights and activations.

4 Experiments

4.1 Experimental Settings

Datasets. All experiments were conducted on CIFAR-10/100 [25] and Im-
ageNet [7] datasets. The CIFAR-10/100 dataset consists of 60K 32 × 32 color
images, with 6K/600 images in each of the 10/100 different classes. There are
50K training images and 10K testing images. The ImageNet dataset consists of
over 1.2M images for training from 1K classes and 50K images for validation. For
training, we applied the common data augmentation techniques found in [9, 61]
under the following order: random image crop, image resize to 224 × 224, and
random horizontal flip. For testing, we limited the data augmentation techniques
to only center crop. All transformed images were normalized by the mean and
the standard deviation.

Table 1: Configurations of quantization.
Configuration Weights Activations
LSQ Uniform Uniform
nuLSQ-A Uniform Non-uniform
nuLSQ-W Non-uniform Uniform
nuLSQ-WA Non-uniform Non-uniform

Implementation details. Our
proposed method was imple-
mented in PyTorch. We tested
nuLSQ by quantizing the ar-
chitecutes of pre-activation and
original versions of ResNet [14],
MobileNetV2 [49], Swin-tiny [33],
and ConvNeXt-tiny [36]. As
summarized in Table. 1, we quantized both weights and input activations uni-
formly or non-uniformly. Both weights and activations were quantized into in
2-, 3-, or 4-bits for all the convolution and fully connected layers except for the
first and last layers, whose low-bit quantization is empirically known to lead to
significant performance degradation. Both the first and last layers were set to
be 8-bit to balance hardware overhead and the accuracy degradation [9,28,45].
In all experiments, we applied layer-wise quantization for both activations and
weights. Signed and unsigned quantization ranges were adopted for weight and
activation quantization, respectively. The pre-trained models were taken from
PytorchCV [1] and timm library [2]. We used the cosine learning rate decay
without restart [37].

For CIFAR10/100, we adopted the pre-activation version of ResNet-20 and -
56. For ImageNet, we adopted the pre-activation and original versions of ResNet-
18, MobileNetV2, Swin-T, and ConvNeXt. After hyperparameters were selected



Learning Non-Uniform Step Sizes for Neural Network Quantization 9

in 15 epochs via validation data (10% of the original training dataset), we eval-
uated accuracy for 15 or 90 epochs with test data. More details of the imple-
mentation, along with hyper-parameter settings, are given in the supplementary
material.

4.2 Mitigation strategies for the emergence of negative step sizes

As we move into the extremely low-precision regime with gradient-based learn-
able quantization approaches, the final performance after quantization training
is notably influenced by the initialization of step sizes [5,45] and the handling of
their gradients [9]. The extreme sensitivity often results in encountering nega-
tive step sizes or being trapped in a local minimum. Empirically, several factors
contribute to this unwanted situation: (i) Bad initialization, diverging from the
original distribution’s shape and (ii) the large and varied magnitude of the step-
size gradients, stemming from the STE approximation and the large difference in
the number of parameters for weights/inputs and step sizes at each layer. To mit-
igate this problem, we employ MSE-based initialization and AdamW optimizer
for step sizes. In the supplementary material, we also discuss the progressive
fune-tuning method [64].

MSE-based initialization and AdamW optimizer. The MSE-based ini-
tialization [5,45] and Adam optimizer for step sizes [21,34,40] were seen to show
good performance in different previous studies. The MSE-based initialization
brings the distributions of the initial quantized weights and inputs closer to the
original one. The Adam optimizer normalizes large and varied magnitude of the
step-size gradients, thereby facilitating training with a common learning rate for
the step sizes. Here, we utilize both methods jointly to obtain good performance
while avoiding the emergence of negative step size or being trapped in local min-
ima. To treat the weight decay for the large magnitude of step-sizes’ gradient
correctly, we use AdamW optimizer instead of Adam optimizer. We performed
an ablation study on initialization and optimizer by comparing with LSQ ini-
tialization [9] and SGD optimizer. This comparison was conducted using 2-bit
nuLSQ-WA applied to the pre-activation version of Resnet-18 network on Ima-
geNet. As shown in Table 2, MSE initialization and AdamW optimizer jointly
yield 0.7% enhancement in accuracy.

Table 2: Effects of initialization and optimizer for step sizes at 2-bit pre-activation
version of Resnet-18 for 90 epochs

Method Initialization optimizer Top-1 Acc

nuLSQ-WA
LSQ init [9] SGD 67.11%
LSQ init [9] AdamW 67.34%
MSE init AdamW 67.79%
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4.3 Comparison of existing methods with MobilenetV2 architecture

Effect of BN re-estimation Like LSQ, nuLSQ shows significant accuracy
degradation on MobileNetV2 due to weight oscillations caused by quantization.
As discussed in [40], this can be recovered by re-estimating the batch normal-
ization statistics after training [38, 43]. From Table. 3, we can see that BN re-
estimation is effective in nuLSQ as well.

Table 3: Accuracy (%) on 2-bit
MobileNetV2 for 90 epochs before
and after BN re-estimation

methods pre-BN post-BN
nuLSQ-W 53.48 58.26
nuLSQ-A 53.19 58.43

nuLSQ-WA 49.57 58.72

Comparison to other QAT methods
We compare our method with other well-
established QAT methods without knowledge
distillation for MobileNetV2 on ImageNet.
From Table 4, we can see that our method
outperforms all of the existing methods. In
particular, our method shows a significant
improvement of 8% in accuracy compared to
the existing methods at 2-bit. Remarkably, with the incorporation of oscillation
dampening (Dp) and iterative weight freezing (Fz) methods proposed in [40] for
LSQ into nuLSQ, it is expected that the accuracy is further improved over the
present results using the re-estimation of the batch normalization.

Table 4: Comparison with state-of-the-art QAT methods without and with knowledge
distillation (KD) on MobileNetV2. “FP” represents “Full Precision”, while the “W/A”
values denotes the bit-widths of weights/activations, respectively. The results of exist-
ing methods are referenced from their corresponding papers.

Methods without Bit-width (W/A)
knowledge distillation 2/2 3/3 4/4

MobileNetV2 (FP: 72.91)
PACT [6] - - 61.4
LSQ [9,13] 46.7 65.3 69.5
LSQ + BR [13] 50.6 67.4 70.4
LSQ + Dp/Fz [40] - 67.8 70.6
UniQ [45] 50.5 65.0 68.2
DSQ [10] - - 64.8
LCQ [55] - - 70.8
LLSQ [62] - - 67.4
EWGS [27] - - 70.3
nuLSQ-W 58.3 67.8 71.0
nuLSQ-A 58.4 67.9 71.1
nuLSQ-WA 58.7 68.3 70.9

Methods with Bit-width (W/A)
knowledge distillation 4/4

MobileNetV2 (FP: 72.91)
QKD [24] 67.4
PROFIT [42] 71.56
nuLSQ-A + KD 71.89

Effect of knowledge distillation We have conducted the evaluation with
knowledge distillation. We adopted the same distillation approach as discussed
in [9]: using the standard and distillation losses at temperature of 1 in the same
ratio, and employing a pre-trained FP model with frozen weights as the teacher
network. We trained the networks for 128 epochs. We compared our results with
the previous studies that utilized knowledge distillation on 4-bit MobileNetV2 in
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Table 4. For a fair comparison, N2UQ [34] was excluded despite utilizing knowl-
edge distillation, because it used additional procedures: replacing the activation
function with RPReLU and incorporating learnable bias terms.

Our method reduces the accuracy drop to nearly 1%. This further highlights
the practical significance of 4-bit quantization.

4.4 Fair comparison of existing methods with ResNet architecture
on ImageNet

We conducted a fair evaluation of existing methods using identical setup for
various configurations, including optimizers, schedulers, epochs, and choice of
pre-trained models. We present a comparison between our methods and some
of existing methods in Table 5. We trained 2-bit models with original version
of ResNet-18 for 15 epochs. We utilized AdamW optimizer with MSE initializa-
tion for quantizer parameters such as step sizes (LSQ/nuLSQ-A) and clipping
threshold (PACT/APoT/LQ-Nets), while weights were optimized using SGD.
Hyperparameters were selected via validation data in all of the existing methods
as well. Notably, nuLSQ-A outperforms the existing methods. In the supple-
mantary material, we also show the comparison in the pre-activation version
of ResNet-18 and -34 with more various existing methods, demonstrating that
nuLSQ outperforms them.

Table 5: Top-1 test accuracy (%) on ImageNet comparisons. ResNet-18 (FP:69.76%)
at 2-bit under identical conditions with MSE initialization + AdamW optimizer for
quantizers. Results marked with ∗ are obtained from our implentation, while those
marked with † are obtained from the original source code after fixing minor bugs.

PACT∗ [6] DoReFa∗ [63] LSQ∗ [9] APoT† [28] LQ-Nets∗ [61] LCQ∗ [55] nuLSQ-A

62.48 63.28 64.51 64.41 63.71 64.67 64.89

4.5 Detailed comparison with LSQ on various architectures

Since nuLSQ is a natural extension of LSQ, we compared nuLSQ with LSQ in
detail. To ensure fairness, we implemented LSQ and conducted the accuracy
comparison under identical experimental settings.

Evaluation with Resnet architectures on CIFAR-100. We employed the
pre-activation version of ResNet-20 and Resnet-56 on CIFAR-100. We performed
the experiment five times and calculated the mean accuracy and the standard
deviation σacc. In Table 6, we can see that nuLSQ outperforms LSQ in all cases
except for 4-bit ResNet-20, which shows relatively large standard deviations,
0.33% in LSQ and 0.43% in nuLSQ-A. Particularly, it is shown to be effective at
2-bit and 3-bit with improvements of up to 0.36%. These results indicate that ac-
curacy degradation due to large quantization errors at low bits, especially below
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Fig. 4: Comparison of Shannon Entropy of quantized weights (a)-(c) and quantized
activations (d)-(f) using LSQ and nuLSQ-A and -W on ResNet-20. Regardless of bit
widths, nuLSQ consistently exhibits larger entropy in most layers.

4-bit, is mitigated with non-uniform quantization. As shown in the supplemen-
tary material, nuLSQ-WA, which has non-uniform quantizers for both weight
and activation, led to a slight improvement over or nearly the same accuracy as
nuLSQ-A or nuLSQ-W.

Table 6: Top-1 accuracy (%) comparison between LSQ and our method with preac-
tivation version of ResNet-20, -56 on CIFAR-100 dataset. Results marked with * are
from our implementation.

Network Methods Bit-width(W/A)

2/2 3/3 4/4

ResNet-20
*LSQ [9] 65.82± 0.23 68.60± 0.23 69.56± 0.33

(FP: 69.8)
nuLSQ-A 66.02± 0.29 68.58± 0.21 69.42± 0.43
nuLSQ-W 66.00± 0.39 68.70± 0.11 69.40± 0.14

ResNet-56
*LSQ [9] 70.50± 0.11 72.62± 0.15 73.48± 0.21

(FP: 74.9)
nuLSQ-A 70.66± 0.29 72.98± 0.10 73.48± 0.25
nuLSQ-W 70.82± 0.22 72.80± 0.18 73.42± 0.25

Comparison on information entropy. To examine how nuLSQ affects the
data distribution by quantization compared to LSQ, we calculated the Shan-
non Entropy defined as H(X) = −

∑
i P (xi) log2 P (xi), where P (·) denotes the

probability of observing the value xi of the set of the quantized output X. The
results of the weights and the activations of each quantized layer for ResNet-20
except the first and last layers are shown in Fig. 4. Our results demonstrate that
nuLSQ gains more information than LSQ in most layers regardless of bit widths.



Learning Non-Uniform Step Sizes for Neural Network Quantization 13

This implies that the distributions of the quantized activations and weights in
nuLSQ are more diverse and less concentrated around specific values. This fits
our motivation described in Section 1: The non-uniform quantization scheme is
able to adapt to the original distribution better than the uniform quantization
scheme with an increased representation capacity.

Evaluation with Modern architectures on ImageNet. We conducted eval-
uations on more modern networks with self-attention layer and larger kernel
sizes. Specifically, we experimented with 2-bit, 3-bit, and 4-bit Swin-T, as well
as 3-bit ConvNeXt as shown in Table 7. Across these experiments, nuLSQ-WA
consistently outperforms LSQ, confirming the effectiveness of nuLSQ in diverse
architecutres.

Table 7: Top-1 accuracy(%) comparison between LSQ and nuLSQ-WA on 2-bit Swin-T
and 3-bit ConvNeXt for 15 epochs. Results marked with * are from our implementation.

Methods
Swin-T ConvNeXt

(FP:81.2) (FP:81.87)
2/2 3/3 4/4 3/3

∗LSQ 74.58 77.48 78.33 72.90
nuLSQ-WA(ours) 74.91 77.71 78.37 73.39

4.6 Comparison with other non-uniform methods on CIFAR-10

We compared nuLSQ with other well-established non-uniform methods: LQ-
Nets, APoT, and LCQ. The accuracy of nuLSQ and those of existing methods
on CIFAR-10 are listed in Table 8. For a careful comparison, we implemented
LCQ and trained it from the same floating model used in nuLSQ. The detailed
hyperparameter settings are summarized in the supplementary material. We
performed the experiment five times and calculated the mean accuracy and the
standard deviation σacc. We can see that nuLSQ-A outperforms other existing
methods in all cases. This is attributed to the fact that our quantizer was trained
to lower the loss due to its high deformability as shown in Fig. 2 and Table
9. Finally, it should also be emphasized that our method has the additional
advantage that there are no hyperparameters for the quantizer itself.

5 Conclusion

In this work, we present nuLSQ, a non-uniform version of LSQ (Learned Step-
size Quantization), as a novel approach for training quantized networks. Unlike
LSQ, where the quantization levels are uniformly structured, nuLSQ offers en-
hanced flexibility by individually optimizing the quantization levels. The nuLSQ
has more flexibility than the existing non-uniform quantization methods. This
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Table 8: Top-1 accuracy(%) comparison between nuLSQ-A and other non-uniform
methods using ResNet-20, -56 on CIFAR-10 dataset. Results marked with * are from
our implementation. † denotes the results from the pre-activation version of ResNet.

Network Methods Bit-width(W/A)

2/2 3/3 4/4

ResNet-20

†LQ-Nets [61] 90.2 91.6 -

(FP: 93.49)
APoT [28] 91.0 92.2 92.3
†∗LCQ [55] 90.94± 0.38 92.44± 0.15 92.94± 0.16
†nuLSQ-A(ours) 91.30± 0.13 92.66± 0.14 93.16± 0.17

ResNet-56
APoT [28] 92.9 93.9 94.0

(FP: 95.51)

†∗LCQ [55] 91.82± 0.24 94.54± 0.18 94.67± 0.14
†nuLSQ-A(ours) 93.84± 0.16 94.66± 0.14 95.34± 0.10

Table 9: Hyperparameters and learnable parameters of non-uniform b-bit quantizers.
The number in the brackets for learnable parameters denotes the number of them.

methods hyperparameters learnable parameters
APoT #PoT terms clipping threshold (1)

LQ-Nets #iterations of QEM alg. quantizer basis (b)
LCQ #intervals on piecewise clipping threshold +

linear function (= K) slope of intervals (1 +K)
nuLSQ - step-sizes (2b − 1)

customization allows for a more accurate fitting of the original data distribution,
leading to improved network performance.

To validate the effectiveness of nuLSQ, we conducted comprehensive experi-
ments and comparative evaluations. We compared the performance of nuLSQ
against state-of-the-art quantization approaches, including LSQ. We utilized
three benchmark datasets and four network architectures to assess the general-
izability of nuLSQ. We measured and analyzed important performance accuracy
to provide a comprehensive evaluation of nuLSQ’s advantages over the previous
approaches. We highlight its improved performance over LSQ and other state-of-
the-art quantization methods, emphasizing its potential for enhancing network
training and improving model compression performance.
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