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Abstract. Finetuning is an effective method for adapting pretrained
networks to downstream tasks. However, the success of finetuning de-
pends heavily on the selection of layers to be tuned, as full finetuning
can lead to overfitting, while tuning only the last layer may not capture
the necessary task-specific features. This requires a balanced approach
of automatic layer selection to achieve higher performance. In this con-
text, we propose the Bias-Variance Guided Layer Selection (BVG-LS), a
simple yet effective strategy that adaptively selects a layer to be tuned
at each training iteration. More specifically, BVG-LS computes the bias-
variance ratios of mini-batch gradients for each layer and updates the
parameters of the layer with the largest ratio. This strategy reduces the
risk of overfitting while maintaining the model’s capacity to learn task-
specific features. In our experiments, we demonstrate the effectiveness of
the BVG-LS strategy on seven image classification tasks. We show that
BVG-LS outperforms full finetuning on all tasks with the WideResNet-
50-2 model and on six out of seven tasks with the ViT-S model.4

Keywords: Bias-variance tradeoff · Finetuning strategy · Image classi-
fication

1 Introduction

Finetuning is the process of adapting a pretrained model to a new, but related,
target task [20,47]. This approach can leverage the general knowledge captured
during pretraining on the source task. It also saves time and computational re-
sources compared to training a new model from scratch. Finetuning is especially
useful when a limited amount of training data is available for the target task [46].

Two typical strategies of finetuning are linear probing and full finetuning [56].
Linear probing only updates the last layer of the model (i.e., the linear classi-
fication layer) as shown in Fig. 1 (a). This is an efficient strategy because the
layers for feature extraction are frozen. However, it might not adapt well to the
target task. In contrast, full finetuning updates all layers as shown in Fig. 1 (b).
4 The reproduction code is available online.
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Fig. 1: Summary of finetuning strategies. (a) Linear probing updates only the last
layer. (b) Full finetuning updates the all layers. (c) Our BVG-LS strategy adaptively
selects a layer to be updated at each training iteration. The binary mask m indicates
layers to be updated. BVG-LS determines m from the bias-variance ratios of layer-wise
mini-batch gradients.

This is effective in the sense that it allows the model to learn task-specific fea-
tures, potentially leading to better performance in the target task. However, it
comes with several drawbacks, including the risk of overfitting, loss of robust-
ness [22,51], and high computational costs.

Based on the observation that some layers can extract common general fea-
tures across tasks, while others are more specific to a particular task [53, 55],
freezing or updating only a subset of layers can be more effective than using
linear probing or full finetuning [45,53]. As such, layer selection is an important
factor that affects the performance in the target task. However, it is not trivial
to determine how many and which layers should be updated, as the appropriate
criteria depend on the relationship between the source and target tasks.

Another important factor in fine-tuning is the adaptive selection of layers
to be tuned during training. Gradually tuning from the last layer to the first
layer [16] or automatically selecting layers to be tuned for each sample [12] are
shown to provide performance improvement. This might not only be due to
better initialization in learning but also, as some previous studies suggest, due
to the prevention of co-adaptation between layers, which can positively impact
generalizability [14,41,42,53].

How can we select the best layers to tune? To address this question, we
collect the statistics of the mini-batch gradients. The bias (the average) of the
gradients will be dominant when training should continue, while the variance of
the gradients will be larger at a stationary point such as the minimum. Addi-
tionally, the flatness of the minimum is an important index for generalization
performance [10,21,42]. At a flat minimum point, we can assume that the vari-
ance of the mini-batch gradients is large while the bias is close to zero. Thus,
the bias-variance ratio is a good measure to determine whether the parameters
should be further updated. Our method collects the bias and variance statistics
by layers, as this simplifies computation and can break inter-layer co-adaptation.
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Based on those assumptions, this paper introduces a simple yet effective strat-
egy, namely the Bias-Variance Guided Layer Selection (BVG-LS) strategy. More
specifically, BVG-LS measures the bias-variance ratios of mini-batch gradients
for each layer at each training iteration and adaptively selects the layer with the
maximum ratio to be tuned. This strategy enables models to learn task-specific
features while avoiding overfitting because the bias-variance ratios can be un-
derstood as an indicator of the risk of overfitting. It is worth noting that this
strategy can be applied to any target tasks and models, as the proposed layer
selection method is independent of the tasks and models.

The main contributions of this paper are as follows:

– We propose BVG-LS, a simple finetuning strategy that adaptively selects
layers to be tuned, based on the bias-variance ratios of layer-wise gradients.

– We conducted experiments on seven target tasks with multiple models. The
results show that our method outperforms full fine-tuning on all tasks for
WideResNet-50-2 and on six tasks for ViT-S.

2 Related Work

Finetuning is an effective training method for various downstream tasks. Early
studies find the power of features pretrained on ImageNet [39] in object de-
tection [8, 11, 43] and fine-grained classification [29]. Kornblith et al . [24] finds
transferability of the pretrained model is highly correlated with ImageNet-top-1
accuracy when pretrained on ImageNet, and Kolesnikov et al . [23] shows the size
of the pretraining dataset also matters. To achieve high accuracy in downstream
tasks, many approaches aim to improve pretraining methods [18,34,40], but this
paper focuses on the learning method during finetuning.

Some studies show that linear probing suffices [1, 6], while many others in-
dicate that full finetuning yields better results [5, 19, 24, 31, 36, 40]. Thus, there
must be a compromise between them that can adaptively select which layers and
parameters to be updated based on the relationship between source and target
tasks. In fact, Yosinski et al . [53] shows that the layers closer to the output
are more task-specific, thus need to be re-trained for new tasks. Azizpour et al .
shows that if the distance between the source and target tasks is large (small),
the features from early (later) layers should be re-trained [3]. Long et al . [32]
shows the use of 10 times larger learning rate for the classification layer yields
good transfer.

Based on those findings, many finetuning methods are proposed, focusing
on which layers and parameters to be updated during finetuning. They can be
categorized into two groups. The first group selects the layers or parameters first,
and fixes them during finetuning. Shen et al . [45] utilizes evolutionary search to
select layers, while the search algorithm requires validation data. Howard et
al . [16] and Romero et al . [38] manually set layer-wise learning rate, where the
learning rate decreases linearly from the output to input layers. (They [16, 38]
also introduce scheduling that gradually unfreezes layers from the output layer
during training.) Similar to this, Kumar et al . [26] splits the learning phase into
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two, tuning only the final layer in the former and all layers in the latter. Xu
et al . [50] and Zhang et al . [57] mask certain layers or parameters in advance,
based on the Fisher information of the loss and norm of the gradient, obtained
from partial samples, respectively.

The second group adaptively selects which layers to be tuned during training.
Lee et al . [27] sets larger learning rate for layers with larger gradient norms. The
learning rates are refreshed at each epoch. Guo et al . [12] selects the layers by
having another network that learns the policy about this selection. Our method
selects layers at each iteration; thus, the learning will be more flexible. It also
has relatively less computational cost compared to the calculation of Fisher
information matrix or having another network for layer selection.

There are other lines of work in finetuning, such as those that consider regu-
larization in features [52], interpolation of weights between pretrained and fine-
tuned models [48] such as in model merging [2], and minimizing structural risk
considering model complexity [44]. These are orthogonal to our method; thus,
incorporating these techniques may improve our results. Parameter-efficient tun-
ing such as adapters [15], LoRA [17], and prompt tuning [28] are also intensively
studied for transferring the knowledge of large models. They are also different
lines of work, but it may be possible to incorporate our bias-variance-based se-
lection into these learning.

3 Method

3.1 Overview

We present BVG-LS, a simple yet effective finetuning strategy that adaptively
selects the layer to be tuned at each training iteration based on the bias-variance
ratios of layer-wise gradients.

Notation and settings. Let D ⊂ X ×Y be a training dataset, where X is a set
of images and Y is a set of labels. This paper considers supervised finetuning,
where the goal is to train a function f : X → Y that accurately predicts labels
from images. We denote by ŷ = f(x;θ) the predicted label, where x ∈ X is
an image and θ is a set of learnable parameters. To discuss the choice of layers
to be tuned, we assume that each layer has independent parameter subset, i.e.,
θ = (θ(1),θ(2), . . . ,θ(L)) where θ(l) is the subset of parameters for the l-th layer
and L is the number of layers.

Update rule. Let B ⊂ D denote a mini-batch randomly sampled from training
data. We can generally define the parameter update rule as follows:

θ(l,t) ← θ(l,t−1) +m(l,t) d(l,t), (1)

where t ∈ N is the index of training iteration, θ(l,t) is the subset of parame-
ters for the l-th layer at the t-th iteration, d(l,t) is the update direction, and
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m(l,t) ∈ {0, 1} is a tuning mask to determine which layer to be tuned. The
update direction is given by d(l,t) = −η g(l,t) where η ∈ R is a learning rate
and g(l,t) = ∇θ(l)L is the mini-batch gradient computed with a pre-defined loss
function L and the mini-batch B, for SGD. It can be easily extended to the mo-
mentum SGD and ADAM. The l-th layer is updated if and only if m(l,t) = 1. The
BVG-LS strategy determines m(l,t) based on bias-variance ratios of layer-wise
gradients. Note that setting m(L,t) = 1 and m(l,t) = 0 (l ̸= L) for all t reduces to
linear probing, and setting m(l,t) = 1 for all l and t reduces to full finetuning.

3.2 The BVG-LS strategy

At each training iteration, the BVG-LS strategy selects a layer to be tuned based
on the bias-variance ratios of layer-wise mini-batch gradients. More specifically,
it computes the bias B5 and the variance V with respect to the mini-batch
gradients, and selects the layer with the largest bias-variance ratio r = B/V .
Here, the bias B is defined by the squared magnitude of the expected value of
mini-batch gradients i.e., B = ∥E[g(l,t)]∥2, and the variance V is defined by the
trace of the covariance of mini-batch gradients, i.e., V = tr(V[g(l,t)]).

Figure 2 provides an intuitive understanding of why the BVG-LS strategy
works and reduces the risk of overfitting. When the bias is larger compared to the
variance, many mini-batch gradients share the same parameter update direction,
as shown in Fig. 2 (a). In this case, updating parameters helps decrease the
global loss. Conversely, when the bias is smaller compared to the variance, the
update directions are likely to vary, as shown in Fig. 2;(b). In this case, the risk
of overfitting to specific mini-batches increases, and thus, skipping parameter
updates reduces the risk of overfitting. Therefore, the BVG-LS strategy uses the
bias-variance ratio to determine which layer to be updated.

In practice, calculating the bias and variance at each iteration is compu-
tationally expensive because it requires to evaluate mini-batch gradients for a
number of mini-batches to estimate the expected value of the mini-batch gradi-
ent. To address this problem, the BVG-LS strategy uses the exponential moving
averages (EMAs). Specifically, the bias-variance ratio is computed by

r(l,t) =

∑
i

(
b
(l,t)
i

)2

∑
i

(
v
(l,t)
i −

(
b
(l,t)
i

)2
) , (2)

where b
(l,t)
i and v

(l,t)
i are EMAs of mini-batch gradients and the squared ones,

respectively, given by

b
(l,t)
i = αb

(l,t−1)
i + (1− α)g

(l,t)
i , (3)

v
(l,t)
i = αv

(l,t−1)
i + (1− α)

(
g
(l,t)
i

)2

. (4)

5 Strictly speaking, B is the square of bias, but we refer to B as bias for simplicity.
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Fig. 2: Relationship between the learning state and the bias/variance of the mini-batch
gradients. The gray curve represents the loss landscape, the orange arrow represents
the mini-batch gradient, the red arrow represents the mean of the mini-batch gradient
(i.e., data-wise gradient), and the red area represents the variance of the mini-batch
gradient.

Here, g
(l,t)
i is the i-th element of g(l,t) and 0 ≤ α ≤ 1 is a momentum hy-

perparameter. It is worth noting that r(l,t) is a dimensionless quantity, and is
independent of the dimension and scale of the parameters. This indicates that
r(l,t) can be compared between layers.

Finally, we define the tuning mask so that only the layer with the largest
value of r(l,t) is updated at each iteration. The definition of the tuning mask is
given by

m(l,t) =

{
1 if l = argmax

l′
r(l

′,t)

0 otherwise
. (5)

Note that as for the size of mini-batch, our method does not impose any
restrictions. Use of large mini-batches gives more accurate bias estimates b

(l,t)
i ,

whereas the scale of the variance estimates v
(l,t)
i is obviously affected by the

size of mini-batches. However, this scale ambiguity does not essentially affect
the order of the variance estimates across layers, ignoring the statistical noises.
Thus, it can be said that our layer selection mechanism is generally robust to
the different mini-batch sizes.

Algorithm 1 summarizes the BVG-LS strategy. It iterates through the fol-
lowing five steps. First, the mini-batch gradients g(l) for each layer are computed
using a mini-batch B drawn from the training dataset D. Second, the bias and
variance is updated as Eqs. (3) and (4), respectively. Third, the bias-variance
ratio is computed by Eq. (2). Finally, only the parameters of the layer with the
largest ratio are updated. Note that the EMAs of bias and variance are updated
regardless of whether the parameters are updated.
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Algorithm 1 BVG-LS

Require: initial parameter set {θ(l)}Ll=1, training dataset D, loss function L
1: b

(l)
i ← 0, v

(l)
i ← 1 (∀ l, i)

2: for t = 1 : T do
3: Draw a mini-batch B from D.
4: for l = 1 : L do
5: g(l) ← ∇θ(l)L
6: b

(l)
i ← αb

(l)
i + (1− α)g

(l)
i (∀i)

7: v
(l)
i ← αv

(l)
i + (1− α)(g

(l)
i )2 (∀i)

8: r(l) ← (
∑

i(b
(l)
i )2)/(

∑
i(v

(l)
i − (b

(l)
i )2))

9: end for
10: l∗ ← argmax

l
r(l,t)

11: θ(l∗) ← θ(l∗) − ηg(l∗)

12: end for

Table 1: Summary of source and target datasets. The numbers of classes, training
images, and test images are provided. ImageNet-1K is used as the source dataset and
the others are used as target datasets.

Dataset # of classes # of training images # of test images

ImageNet-1K [39] 1,000 1,281,167 50,000

Flowers [35] 102 1,020 1,020
Pets [37] 37 3,680 3,669
DTD [7] 47 1,880 1,880
Aircraft [33] 30 3,334 3,333
Food [4] 101 75,750 25,250
SUN [49] 397 54,377 54,377
CIFAR100 [25] 100 50,000 10,000

4 Experiments

In this section, we demonstrate the effectiveness of our BVG-LS method by
comparing with full finetuning, partial finetuning and linear probing on seven
image classification datasets with multiple model architectures.

4.1 Experimental settings

Datasets. In all the experiments, the ImageNet-1K dataset [39] was used as the
source dataset to pretrain common models, which were then finetuned by dif-
ferent methods. As target datasets, we chose seven image classification datasets:
Oxford 102 Flowers [35], Oxford-IIIT Pets [37], Describable Textures Dataset
(DTD) [7], FGVC Aircraft [33], Food-101 [4], SUN397 [49] and CIFAR100 [25].
The numbers of classes and images contained in these datasets are summarized
in Tab. 1.
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Table 2: Model sizes (the numbers of layers and parameters) and ImageNet-1K error
rates of pretrained models used in the experiments.

Model # of layers # of parameters Top-1 error rate

Wide-ResNet-50-2 [54] 6 68.9 M 20.35 %
ViT-S [9] 14 22.1 M 21.15 %
ViT-B [9] 14 86.6 M 19.76 %
ConvNeXt-T [30] 6 28.6 M 17.30 %

Model architectures. Wide-ResNet-50-2 [54], ViT-S, ViT-B [9], and ConvNeXt-
T [30] were used for pretraining and finetuning. Wide-ResNet, convolutional ar-
chitecture with many channels, was designed as an improved version of ResNet [13].
Wide-ResNet-50-2 consists of an input layer, 4 hidden layers, and an output layer,
making a 6-layered structure6. Vision transformer architectures ViT-S and ViT-
B both consist of an input layer, 12 Transformer encoder layers, and an output
layer, having total of 14 layers. ConvNeXt-T is more recent convolutional ar-
chitecture that consists of an input layer, 4 stages, and an output layer, having
total of 6 layers. The numbers of layers, the numbers of parameters, and the error
rates of pretrained models on the ImageNet-1K validation set are summarized
in Tab. 2.

Training details. After pretraining, the weight matrix in the output layer
of each pretrained model is replaced by a random matrix that can produce a
vectors of dimension same as the number of classes in the target dataset for fine-
tuning. ViT-S, ViT-B, and ConvNeXt-T were finetuned for 300 epochs, whereas
Wide-ResNet-50-2 was finetuned for 50 epochs on each target dataset. We em-
ployed Nesterov’s accelerated gradient method with momentum rate of 0.9 in all
experiments. The batch size and learning rate were 128 and 0.01, respectively.
No learning rate scheduling was adopted in the finetuning stage. The coefficient
used in the EMA computations of biases and variances, α, appeared in Eqs. (3)
and (4), was set to 0.9.

4.2 Results

Generalization. We first observe funetuning performance of different methods
using the strong convolutional model, WideResNet-50-2. Tab. 3 provides the
summary of test error rates. Notably, full finetuning (or end-to-end finetuning)
and linear probing (updating only the final layer) perform poorly, compared
to other methods, even though these two naive strategies are widely adopted.
Partial finetuning performs better than full finetuning and linear probing in most
cases, but still the test error rates fluctuate significantly across different settings
of partial finetuning, depending on which layers are frozen. This indicates that

6 Here, “layer” refers to a group of similar operations (e.g., convolution).
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Table 3: Test error rates (%) after finetuning the WideResNet-50-2 model pretrained
on ImageNet-1K. “Ln-m” indicates that the n-th layer, n+1-layer, · · · , and m-th layer
are finetuned jointly from pretrained values, while the rest of the layers are kept fixed.
Note that 6-th layer is the final layer. “Linear probing” indicates that only the final layer
is finetuned. “Full finetuning” is same as L1-6 for this model. The best and second-best
results are marked in bold and underlined, respectively.

Dataset Full Partial finetuning Linear BVG-LS
finetuning L2-6 L3-6 L4-6 L5-6 probing (ours)

Flowers 7.65 6.67 6.37 5.88 4.61 12.84 6.18
Pets 15.14 13.24 11.96 10.29 8.33 8.22 6.26
DTD 40.37 38.78 37.23 34.57 31.60 35.32 29.20
Aircraft 19.34 18.32 16.28 16.22 17.72 49.40 14.60
Food 18.01 17.05 16.52 15.84 16.97 35.45 14.19
SUN 35.54 35.18 34.23 33.21 31.77 36.72 30.23
CIFAR100 22.07 21.65 21.89 23.06 31.93 56.87 17.25

Average 22.59 21.55 20.64 19.87 20.42 33.55 16.84

practitioners need to conduct computation-intensive hyperparameter search for
finetuning on each dataset to enhance the model’s generalization ability. Our
BVG-LS outperforms full finetuning, partial finetuning and linear probing on
Pets, DTD, Aircraft, Food, SUN and CIFAR100 datasets. The only exception is
Flower dataset, where BVG-LS marks the top-3 performance.

It is worth mentioning that our BVG-LS significantly outperforms full fine-
tuning, although these two methods do update parameters of all layers in the
end. As will be shown later, we have evidence that BVG-LS updates all layers
during finetuning. This observation indicates that the finetuning scheme of co-
herently updating all layers likely deteriorates generalization abilities of a model.
In addition, given that BVG-LS selects a layer to be updated at a time, full fine-
tuning effectively experiences 6 times more updates in an arbitrary layer, on
the average. Nevertheless, the learning curve in Fig. 3 shows that BVG-LS un-
dergoes faster descent than the full finetuning in terms of both empirical and
test losses. We confirmed similar trends on other datasets. Updating only one
layer at a time might sound ineffective because computed gradients are partly
“thrown out”7, but in reality this sparse update scheme enjoys faster loss descent,
while avoiding excessive interference with strong feature extraction ability of the
pretrained model.

Next, we observe the test performance of ViT-S, ViT-B and ConvNext/T
as summarized in Tab. 4. Among the methods compared, linear probing con-
sistently underperforms the others except for only a few cases. In the case of
ViT-S, out BVG-LS clearly outperforms full finetuning on all datasets except
for Aircraft. However, with ViT-B, which has about 4 times more parameters
compared to ViT-S, BVG-LS won 4 out of 7 datasets and underperforms on

7 We do use all gradients to update the statistical measures, though.
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Fig. 3: Comparison of loss curves between BVG-LS and full finetuning: (a) loss on
training data, (b) loss on test data. Results of the WideResNet-50-2 models finetuned
on the SUN dataset are shown. Our BVG-LS undergoes faster loss descent in both
training and test cases, and achieves smaller test loss than full finetuning.

Table 4: Performance comparison using ViT-S, ViT-B, and ConvNeXt-T. Full: full
finetuning. Linear: linear probing. The best results are marked in bold.

Dataset ViT-S ViT-B ConvNeXt-T
Full Linear BVG-LS Full Linear BVG-LS Full Linear BVG-LS

Flowers 5.78 10.39 5.39 4.61 7.16 6.86 3.53 15.20 5.39
Pets 8.88 7.84 6.32 5.09 5.31 4.98 5.12 5.94 5.20
DTD 30.69 32.77 25.75 25.85 28.46 26.60 25.48 30.05 25.05
Aircraft 17.93 46.28 18.47 13.28 33.39 18.47 8.84 38.34 11.42
Food 17.88 28.34 13.24 12.66 20.20 11.96 13.71 23.58 12.51
SUN 33.93 32.83 28.05 27.58 28.94 26.37 27.93 30.21 26.71
CIFAR100 17.31 22.40 12.39 10.25 15.82 10.10 13.90 22.25 12.06

AVE 18.91 25.84 15.66 14.19 19.90 15.05 14.07 23.65 14.05

the average test error rate compared to full finetuning. With the ConvNeXt-T
model, a convolutional model having 2.4× less parameters than WideResNet-50-
2, BVG-LS again won 4 out of 7 datasets and performs equally on the average
test error rate compared to full finetuning. These observation brings implications
that BVG-LS performs mostly better than other schemes compared when rela-
tively large-size convolutional models (e.g., WideResNet) or realtively small-size
transformer models (e.g., ViT-S) are used. Currently, we have no clear explana-
tion for these implications. Nevertheless, in the opposite cases (e.g., ViT-B or
ConvNeXt-T), model performace depends on datasets; therefore, in reality try-
ing both full finetuning and BVG-LS is a good practice. To provide an example
of how BVG-LS undergoes loss descent in a consistent fashion, Fig. 4 shows loss
curves of BVG-LS and full finetuning on the SUN dataset. It is clear that full
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Fig. 4: Comparison of loss curves between BVG-LS and full fine-tuning: (a) loss on
training data, (b) loss on test data. Results of the ViT-S models finetuned on the SUN
dataset are shown. Our BVG-LS achieves much smaller test loss than full finetuning.

finetuning quickly altered to overfitting stage before reaching a sufficiently small
test loss.

Analyses on layer selection frequencies in BVG-LS. We investigated the
frequency for each layer to be updated in BVG-LS finetuning. The proportion of
layer selections during BVG-LS finetuning on each dataset is plotted in Fig. 5.
Layer selection frequencies exhibit great fluctuations in the cases of Flowers,
Pets, DTD and Aircraft datasets, due to the fact that they have less training data
than the others (see Tab. 1), resulting in small numbers of updates per epoch.
As stated earlier, in all cases, every layer is updated, even though the update
frequencies vary across different layers. Among 6 layers, the last layer undergoes
dominant updates in the very early stage of finetuning on all target datasets,
except Flowers and Aircraft. It is continued to be relatively high throughout
the entire finetuning. This makes sense, since the last layer, which is randomly
initialized for a target dataset, likely yield higher bias-variance gradient ratios
than the other layers. Somewhat surprisingly, the selection frequency of the input
layer is quite high (roughly, the second highest). This may be explained by the
differences in the low-level features of the source and target datasets.

Analyses of layer-wise bias-variance ratios. We analyze the layer-wise
bias-variance ratios r(l,t) defined in Eq. (2). Fig. 6 shows r(l,t) computed during
full finetuning and BVG-LS finetuning on each dataset. As explained earlier, we
assumes that the smaller this bias-variance ratio is for a layer, the more likely it
is to overfit.

First, let us observe the full finetuning results in first and third columns of
Fig. 6. The bias-variance ratios have considerable disparities across layers. For
example, in Pets, DTD, and Food, the bias-variance ratios for layer 1 (input
layer) and layer 6 (output layer) are significantly smaller compared to other
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Fig. 5: Layer selection frequencies in the BVG-LS finetuning. Results of WideResNet-
50-2 models are shown. All 6 layers are updated in the finetuning process. The layer 6
(output layer) and the layer 1 (input layer) relatively receive frequent updates.

layers. Additionally, in Flowers, a considerable disparity in the early stage of
training is observed.

In contrast, compared to full finetuning, our BVG-LS method exhibits more
consistent bias-variance ratios across layers. Noticeable examples are Pets and
DTD, where certain layers (layer 6 and possibly layer 1) experience non-negligible
offsets in the bias-variance ratios for the case of full finetuning. These offsets
could be the reason for poor full finetuning performance on Pets and DTD
datasets, as is evident in Tab. 3. To be more specific, in these cases, the existence
of these variance-dominated layers implies that the model becomes to adapt
individual training samples. On the other hand, BVG-LS has a mechanism to
better maintain consistent bias-variance ratios across layers, as can be observed
in Fig. 2.

5 Conclusion

In this paper, we have proposed a fine-tuning strategy called Bias-Variance
Guided Layer Selection (BVG-LS), which adaptively selects the layer to be tuned
based on the bias-variance ratios of the mini-batch gradients. By considering the
bias-variance ratios as an indicator of the risk of overfitting, BVG-LS has se-
lected the layer with the maximum ratio at each training iteration, resulting
in the avoidance of overfitting. Experimental results have shown that BVG-LS
outperforms full fine-tuning in all seven target tasks for WideResNet-50-2 and
in six out of seven target tasks for ViT-S. This highlights the effectiveness of our
approach. Finally, we discuss limitations and future work.
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Fig. 6: Layer-wise bias-variance ratios r(l,t) defined by Eq. (2) in full finetuning (1st
and 3rd columns) and BVG-LS (2nd and 4th columns). Results of the WideResNet-
50-2 models are shown. See the main text for explanation.

Limitation. We focus on layer selection in finetuning without modifying net-
work architectures. While BVG-LS outperformed full finetuning, it does not nec-
essarily always select the best layer for improving performance in target tasks
because BVG-LS considers only the first- and second-order statistics. This ne-
cessitates addressing higher-order statistics, especially those related to outliers.

Additionally, BVG-LS updated only one layer at each training iteration.
While applying a threshold to the bias-variance ratio r(l,t) could allow updat-
ing multiple layers simultaneously, this strategy did not improve performance as
shown in Table 5. This would be due to gradient conflicts among layers when
multiple layers are updated concurrently.

Future work. Our future work includes improving the indicator based on
higher-order statistics and analysing loss curvature of each layer. We also plan
to exprole a mechanism to skip gradient computations for layers with low bias-
variance ratios to reduce computational costs. Furthermore, applying the pro-
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Table 5: Performance comparison with the case where a threshold is applied to the
bias-variance ratio r(l,t). In the "Threshold" method, instead of updating the layer
with the highest r(l,t), all layers with r(l,t) above a certain threshold (set to 0.056 in
this case) were updated. The best and second-best results are marked in bold and
underlined, respectively.

Dataset Full Linear BVG-LS Thresholdfinetuning probing (ours)

Flowers 7.65 12.84 6.18 6.28
Pets 15.14 8.22 6.26 8.61
DTD 40.37 35.32 29.20 31.97
Aircraft 19.34 49.40 14.60 19.90
Food 18.01 35.45 14.19 16.13
SUN 35.54 36.72 30.23 32.44

Average 22.67 29.66 16.78 19.22

posed strategy approach to other data types, such as audio and text, would also
be a promising next step.
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