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Abstract. Transfer learning is widely used as a means to leverage knowl-
edge obtained from a source dataset to solve a downstream task on a tar-
get dataset. In the realm of image classification, models trained on large
datasets often exhibit high degrees of invariance in the output spaces
against intra-class variations such as geometric or chromatic changes
that leave the class labels invariant. Leveraging these invariant charac-
teristics from one model to enhance the performance of another is an
attractive prospect. However, a previous study has pointed out that con-
ventional transfer learning approaches often compromise the robustness
of the pre-trained model when transferred. In this paper, we propose a
novel transfer learning method called TransInv, aimed at transferring the
invariant properties of a teacher model to a target model. The invariance
of the teacher model is expressed by a set of augmented samples produced
by our proposed data augmentation module, which is jointly optimized
with the target model parameters. We demonstrate that our proposed
method effectively transfers the invariant properties of the teacher model
to the target model, resulting in superior model performance compared
to baseline methods. The code will be released upon acceptance.

Keywords: Transfer Learning · Data Augmentation.

1 Introduction

Transfer learning has become a standard practice in various machine learning
applications [8, 16, 13, 14, 1, 3]. Typically, this involves transferring knowledge ac-
quired by a pre-trained model to a target model through fine-tuning process. For
example, in image recognition, models pre-trained on ImageNet [9] exhibited im-
pressive performance in downstream tasks, such as object detection [21, 4, 30, 27]
and semantic segmentation [5, 35].

In the realm of image classification, networks trained on datasets with diverse
intra-class variations often exhibit strong model performance. Such models tend
to develop a high degree of invariance in the output space. The idea of trans-
ferring these invariant properties from a pre-trained model to a target model
would robustify the target model against similar variations. However, Yamada
et al. [36] demonstrated that conventional transfer learning approaches, involv-
ing network fine-tuning, do not consistently preserve the invariant properties of a
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pre-trained model. They found that when freezing the backbone and re-training
only the head on the target dataset, the target model well maintains the origi-
nal robustness, but the resulting performance on the downstream tasks is often
limited. This study indicates that maintaining the robustness of the pre-trained
model while adapting the entire network to the target dataset is challenging in
current transfer learning at current methodologies.

Aside from transfer learning, data augmentation techniques [2, 10, 43, 37, 34,
42, 40] have proven effective in enhancing model robustness against various types
of image deformations. In data augmentation, hyperparameters of data defor-
mation were used to be hand-tuned, making optimal tuning difficult. However,
recent advancements in automatic hyperparameter search methods have demon-
strated improved model performance. But, when the target dataset has limited
size, models may not acquire sufficient intra-class invariance only by data aug-
mentation methods.

In this work, we propose a novel transfer learning method, TransInv, which
leverages the invariance captured by a teacher model through data augmentation
and transfers it to the target model. Our contributions are summarized below.

– We present TransInv, a new approach to transfer learning, aimed at trans-
ferring the invariance properties encapsulated by a teacher model to a target
model. The hyperparameters of the data augmentation module are optimized
with gradient descent, ensuring that augmented data express the range where
the teacher model possesses good invariance.

– We demonstrate that TransInv effectively transfers the teacher’s invariance
to the target model, resulting in superior classification accuracies compared
to both naive network fine-tuning and a strong baseline data augmentation
method, AugMix [20].

2 Related Work

Machine-learning models are considered robust when their performance remains
largely unaffected by addition of noise or deformation to the input data. Since
Christian et al. [33] demonstrated that adversarial examples can significantly
degrade model performance, robustness against adversarial noise has been stud-
ied in depth [28]. Additionally, robustness against common corruptions given to
images (e.g., ImageNet-C [4]) and domain shifts [20, 15, 13, 12] have been studied.

There are several aspects that influence robustness, as follows. Model size:
larger models trained on large-scale datasets tend to exhibit greater robust-
ness [39]. Regularization: Methods such as data augmentation typically enhance
robustness. Architecture: Vision transformers [11] exhibit higher resilience against
common corruptions compared to CNN-based models [35]. Transfer learning :
While conventional transfer learning often leads to strong generalization on
downstream tasks, it may not always preserve the robustness of the pre-trained
model [36].

Data augmentation, a technique to effectively expand the training dataset
by generating numerous artificial data from original data samples, generally en-
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hances robustness. Image processing techniques such as random horizontal flips,
random scale-and-crop, and random color shift are commonly employed in aug-
mentation to enhance the model performance [2, 10, 43, 37, 34, 32]. By combining
such random operations, a vast amount of training data can be generated through
data augmentation. Research has demonstrated that employing more sophis-
ticated data augmentation techniques can further improve robustness against
image corruptions [4, 18, 20].

In principle, applying data augmentation methods could address the issue of
maintaining the robustness of a pre-trained model during fine-tuning. However,
it has not been obvious how to design the augmentation that matches the robust-
ness of the pre-trained model, since it is generally unknown to what extent the
pre-trained model is robust. Although methods for automatically searching data
augmentation hyperparameters [6, 17, 25, 31, 7, 29, 26, 41] often achieve high per-
formance, they are not specifically designed to preserve the robustness acquired
by the pre-trained model when transferring knowledge to a target model.

Our work stands out in that we propose a novel type of transfer learning
aimed at preserving the robustness acquired by the pre-trained model, through
generation of augmented data that fall within a range where the pre-trained
model produces nearly invariant outputs.

3 Transferring Teacher’s Invariance to Student

TransInv is a framework that jointly optimizes two models, the data augmenta-
tion model and the target model, using a min-max objective. The data augmen-
tation model learns to modify original image samples x in a way that (a) the
generated data x̂ become adversarial for the target model and (b) the pre-trained
teacher model produces nearly identical outputs for both x and x̂. Meanwhile,
the target model learns to accurately classify the augmented data samples. Addi-
tionally, we demonstrate that TransInv can be extended to incorporate multiple
teacher models.

3.1 Augmentation model

Our method uses K data augmentation primitives, denoted as aiϕi
(x, z), where

i = 1, · · · ,K. Each primitive applies a specific type of data deformation, such
as contrast shifting, blurring, rotation, etc., to an input image x ∈ [0, 1]3×H×W ,
where H and W represent the height and width of the image, respectively. Ad-
ditionally, each primitive takes a random vector z ∼ N (0, I), where N (0, I)
represents M -dimensional normal distribution with zero mean and identity co-
variance matrix. The i-th primitive is constructed using a combination of a
neural network with learnable parameters ϕi and a predefined function to ex-
press a specific type of deformation, similar to the approach outlined in [31].
Concrete examples of these primitives, along with other experimental settings,
will be provided in the next section.
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Fig. 1: The proposed process of data augmentation. Left: Each of the data aug-
mentation primitives {aiϕi

} performs a particular type of image deformation. At
each iteration, only i-th primitive is selected with probability pi to produce the
deformed input image, x̃. Right: The overall data augmentation model Aϕ,p,q

produces either the deformed image x̃ with probability qpi or the original image
x with probability 1− q.

The proposed process of data augmentation is illustrated in Fig. 1. During
training, for a given image x, the i-th primitive is randomly selected based on
the selection probability pi. The probability vector p = [p1, p2, · · · , pK ]⊤ with∑K

i=1 pi = 1 is learned alongside the target classification model and the data
augmentation model. This enables control over the frequency of different types of
deformations. Let Ãϕ,p denote a function that selects the i-th primitive aiϕi

(x, z)
with probability pi, defined as follows:

Ãϕ,p(x, z) =


a1ϕ1

(x, z) with probability p1,
...
aKϕK

(x, z) with probability pK .

(1)

To ensure that the target model explicitly learns the original image samples with
probability q ∈ [0, 1], we define the following data augmentation function:

Aϕ,p,q(x, z) =

{
Ãϕ,p(x, z) with probability q,

x with probability 1− q.
(2)

Equations (1) and (2) can be rewritten as Eqs. (3) and (4) by using a
one-hot vector ĝ = [ĝ1, ĝ2, · · · , ĝK ]⊤ sampled from a categorical distribution
Categorical(p), and an integer b̂ ∈ {0, 1} sampled from the Bernoulli distribu-
tion Bernoulli(q):

Ãϕ,p(x, z) =

K∑
i=1

ĝia
i
ϕi
(x, z), ĝ ∼ Categorical(p), (3)
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Fig. 2: Overview of the parameter optimization in TransInv. Step 1: It updates
the target model parameters θ to reduce the classification loss. Step 2: It up-
dates the augmentation model parameter ϕ, the primitive sampling probabilities
pi (i = 1, · · · ,K), and the binary sampling probability q to bring the outputs
from both the target and teacher models closer and to raise the classification
loss for the target model.

Aϕ,p,q(x, z) = b̂Ãϕ,p(x, z) + (1− b̂)x, b̂ ∼ Bernoulli(q). (4)

The augmentation model described in Eq. (4) as it is non-differentiable with
respect to p or q because it involves discrete variables ĝ1, · · · , ĝK , and b̂. We
address this issue by relaxing these discrete variables to continuous ones using the
Gumbel-Softmax trick, allowing for the computation of derivatives. For further
details on the Gumbel-Softmax trick, readers are referred to [23]. Henceforth,
we assume that Aϕ,p,q(x, z) is differentiable due to this trick.

3.2 Optimization of TranInv

Let X = {(xi, yi)}i=1,··· ,N denote the target training dataset, where xi ∈ R3×H×W

represents the i-th image and yi is its corresponding c-dimensional class label.
The target model, parameterized by θ, is denoted as Fθ : R3×H×W → ∆c−1,
while the teacher model is represented as T : R3×H×W → ∆d−1. Here, ∆n de-
notes n-unit simplex, defined as ∆n = {[b1, · · · , bn+1]

⊤ ∈ Rn+1
+ |

∑n+1
i=1 bi = 1}.

In our setup, the number of classes in the source dataset and that in the tar-
get dataset may differ. The optimization problem for the augmentation model
parameters ϕ, the primitive sampling probabilities pi (i = 1, · · · ,K), the binary
sampling probability q, and the target model parameters θ can be formulated as
follows:

min
θ

max
ϕ,p,q

N∑
i=1

E
z∼N (0,I)

[L1(yi, Fθ(Aϕ,p,q(xi, z)))− L2(T (xi), T (Aϕ,p,q(xi, z))] .

(5)
Here, L1 and L2 represent the cross entropy losses defined for the target and
source datasets, respectively. Note that L2 is equal to L1 in a special case where
the dimensions of y and T (x) match. The first term represents the supervised
loss for the target model Fθ with deformed input. The second term quantifies
the discrepancy between the output of the teacher model with deformed and



6 T. Kurioka et al.

Algorithm 1 TransInv
Require: Training dataset X ; target model Fθ; teacher model T ; augmentation model

Aϕ,p,q; learning rates ηtar, ηaug; batch size B; the number of outer iterations nouter;
the number of inner iterations ninner

for 1, .., nouter do
for 1, .., ninner do

Randomly sample a mini-batch B of size B from X .
z ∼ N (0, I)
Compute loss for the target model, i.e., Ltar =

∑
b∈B L1(yb, Fθ(Aϕ,p,q(xb, z))).

Update θ by the gradient descent, i.e., θ ← θ − ηtar∂Ltar/∂θ.
end for
Randomly sample a mini-batch B of size B from X .
z ∼ N (0, I)
Compute loss for the augmentation model, i.e.,
Laug =

∑
b∈B[L1(yb, Fθ(Aϕ,p,q(xb, z)))− L2(T (xb), T (Aϕ,p,q(xb, z)))].

Update ϕ, p, q by gradient ascent, i.e., (ϕ, p, q)← (ϕ, p, q) + ηaug∂Laug/∂(ϕ, p, q).
end for

undeformed inputs. The augmentation parameters ϕ and the sampling proba-
bilities p, q are updated to simultaneously increase the classification loss for the
target model Fθ and reduce the discrepancy in the teacher’s outputs. This for-
mulation aims to make the deformation nearly invariant to the teacher’s output,
while generating the data adversarial to the target model Fθ. Conversely, the
target model parameters θ are trained to counteract adversarial deformations in
the minimization of the supervised loss. Through this iterative process, Fθ grad-
ually acquires the discriminative capabilities within the range of deformations
where the teacher model T exhibits some degree of invariance.

The optimization problem described in Eq. (5) can be approximately solved
by alternately updating (ϕ, p, q) and θ. As illustrated in Fig. 2, Step 1 involves
updating the target model parameters θ while keeping the augmentation param-
eters ϕ and the sampling probabilities p, q fixed. Step 2 updates (ϕ, p, q) with
fixed θ. This process is iterated for a predefined number of epochs. The algorithm
is summarized in Algorithm 1.

Extension to multiple teacher models: We propose an extension to the
scenario where multiple teacher models, possibly trained on different datasets,
are utilized. Let T k (k = 1, · · · , L) denote the teacher models, associated with
independent augmentation models Aϕk,pk,qk (k = 1, · · · , L). The optimization of
parameters associated with the augmentation models (ϕk, pk, qk) and the target
model parameters θ is formulated as follows:

min
θ

L∑
k=1

max
ϕk,pk,qk

N∑
i=1

E
z∼N (0,I)

[L1(yi, Fθ(Aϕk,pk,qk(xi, z)))

−L2(T
k(xi), T

k(Aϕk,pk,qk(xi, z))]. (6)
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This extension allows for the transfer of invariant properties from multiple
teacher models. Additionally, as a training option, one may introduce additional
parameter vector r = [r1, · · · , rL]⊤, specifying the probability of selecting aug-
mentation model at each iteration. The probability r can be trained in the same
manner as the selection probability p for the augmentation primitives, as de-
scribed earlier.

4 Experiments

We evaluate TransInv under three experimental settings. In Section 4.1, we
demonstrate how our method can transfer teacher’s invariance to a target model.
In Section 4.2, we compare model performance of TransInv with baseline meth-
ods under an ordinary transfer learning setting, where one teacher model is used.
In Section 4.3, we examine TransInv under the scenario where multiple teacher
models are simultaneously used to train a target model. Below, we describe the
general experimental settings.
Model architecture: We used the WideResNet-40-2 [38] architecture for both
teacher (or pre-trained) and target models in Sections 4.1 and 4.2. We used the
WideResNet-28-10 architecture for both teacher and target models in Section
4.3.
Datasets: Teacher models were trained on the corrupted image dataset CIFAR-
10-C [19] and its uncorrupted version CIFAR-10 [24]. For each type of corruptions
we trained one teacher model using data augmentation with the corresponding
corruption, ensuring that the generated teacher is robust to that specific corrup-
tion. The resulting teacher models are named according to the type of corruption
they are robust to, including Gaussian Noise, Shot Noise, Impulse Noise, Bright-
ness, Contrast, Elastic Transform, Defocus Blur, Glass Blur, Motion Blur, Zoom
Blur, Snow, Frost, Fog, Pixelate, and JPEG Compression. The target models were
trained on the uncorrupted image dataset CIFAR-100 [24].

4.1 Illustration of invariance transfer

This toy experiment serves to illustrate how the teacher’s invariance can be
transferred. We used following six teacher models: Gaussian Noise, Contrast, Elas-
tic Transform, Glass Blur, Snow, and JPEG Compression. Subsequently, six target
models were trained on CIFAR-100 using our method, with each target model
employing one of the teacher models. For the augmentation model, we employed
15 primitives, each corresponding to one of the corruptions provided by CIFAR-
C [19]. It is worth noting that in this toy experiment, we explicitly provided
information about the types of deformations the teacher models are robust to.
In this toy experiment, only the augmentation probabilities p and q were opti-
mized for the augmentation model, while the strength of the deformations was
manually specified.

The primitive-selection probabilities p after applying TransInv are depicted
in Fig. 3. A high probability indicates that the target exhibits relatively strong
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Fig. 3: The primitive selection probabilities p optimized by TransInv in the Sec-
tion 4.1 experiment. The graph titles indicate the types of teacher models. The
x-axis lists 15 data augmentation primitives and the y-axis shows the primitive
selection probabilities optimized by TransInv. The results indicate that in the
training TransInv most frequently generates the same type of deformations, to
which the teacher model is most robust.

invariance to that particular deformation. In all cases, the highest probabili-
ties appear when the corresponding teachers are used. For instance, when the
Elastic transform teacher model is employed, the target model encounters elastic-
transformed samples most frequently. It is important to note that TransInv learns
these frequencies from data. This observation highlights that TransInv effectively
learns the robustness of the teacher models through adaptive data augmentation.

4.2 Transfer learning with one teacher

In this experiment, we evaluate how TransInv enhances the robustness of the tar-
get models against input perturbations, leveraging the strong invariance demon-
strated by the teacher models. We utilized all 15 teacher models, including Gaus-
sian Noise (GN), Shot Noise (SN), Impulse Noise (IN), Brightness (Br), Contrast
(Co), Elastic Transform (ET), Defocus Blur (DB), Glass Blur (GB), Motion Blur
(MB), Zoom Blur (ZB), Snow (Sn), Frost (Fr), Fog (Fo), Pixelate (Pi), and JPEG
Compression (JC), as mentioned earlier.
Augmentation model: We defined K = 4 augmentation primitives. The
i-th primitive aiϕi

is constructed using a combination of a neural network with
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GN SN IN Br Co ET DB GB MB ZB Sn Fr Fo Pi JC Mean
FT 61.5 61.6 62.2 62.6 61.6 65.1 62.2 62.7 62.5 63.2 63.1 62.7 62.5 61.9 60.5 62.4
AM 65.8 65.7 65.3 67.0 66.0 67.8 65.8 66.1 66.6 66.0 66.2 66.1 65.8 65.6 63.9 66.0
FA 65.6 65.4 66.1 66.0 65.3 66.7 65.8 65.3 66.9 66.4 66.7 65.9 65.9 66.7 64.0 65.9

Ours 64.5 66.3 66.9 66.5 66.0 69.6 67.3 67.6 68.2 67.5 68.1 67.6 66.7 67.4 63.0 66.9

Table 1: Accuracies (%) on the clean CIFAR-100 test set in the single teacher
experiment (Section 4.2). The teacher/pre-trained models are trained on CIFAR-
10-C and CIFAR-10. GN indicates Gaussian noise, etc. (see the text). FT, AM,
and FA indicates Fine-tuning, Fine-tuning with AugMix, and Fine-tuning with
FixedAug, respectively. Our TransInv achieves the best in 12/15 cases.

parameters ϕi and a predefined function to express a specific type of deformation,
as follows:

– Contrast and brightness transformation
a1ϕ1

(x, z) = αϕ1(z)x+ βϕ1(z)
– Geometric transformation

a2ϕ2
(x, z) (following implementation in Spatial Transformer Networks [22])

– Gaussian blur
a3ϕ3

(x, z) = γϕ3
(z)x+ (1− γϕ3

(z))Conv(x, κϕ3
(z))

– Gaussian noise
a4ϕ4

(x, z) = x+N (0, νϕ4
(z))

Function αϕ1 is an MLP that produces a scalar in (0.2, 1.8), and βϕ1 is an MLP
that produces a scalar in (−0.5, 0.5) to change contrast and brightness respec-
tively. Function γϕ3

is an MLP that produces blur intensity in (0, 1), and κϕ3
is

an MLP that produces a Gaussian filter with variance in (0, 1.8). ‘Conv’ denotes
convolution operation. Function νϕ4

is an MLP that produces the variance of
Gaussian noise in (0, 0.12). The scalar ranges described above are loosely de-
fined only to prevent the data becoming too adversarial to provoke instability.
The idea is that each primitive learns an appropriate range from data. Coarsely
speaking, these four primitives can embody image corruptions, such as Gaussian
noise, shot noise, impulse noise, brightness change, contrast change, and elastic
transform. For the detailed definitions of the primitive, readers are referred to
our implementation.
Baselines: We evaluated TransInv alongside three baselines: Fine-tuning, Fine-
tuning with AugMix, and Fine-tuning with FixedAug. In Fine-tuning, the target
network was initialized using one of the teacher models and fine-tuned on the
clean target dataset without any data augmentation. In Fine-tuning with AugMix,
the target network was initialized using one of the teacher models and fine-
tuned with data augmentation using AugMix technique [20]. In Fine-tuning with
FixedAug, the target network was initialized using one of the teacher models
and fine-tuned with the same data augmentation used in TransInv, but with
fixed primitive selection probabilities and augmentation strengths. Specifically,
in Fine-tuning with FixedAug, one of the four deformations was randomly selected,
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Fig. 4: Visualization of augmented data of CIFAR-100 obtained by TransInv
when transferred from (a) Shot Noise teacher model and (b) Fog teacher model
trained on CIFAR-100 with shot noise and fog data augmentation, respectively.
Images generated by the augmentation primitives a1ϕ1

(Contrast and brightness
transformation), a2ϕ2

(Geometric transformation), a3ϕ3
(Gaussian blur), and a4ϕ4

(Gaussian noise) are shown from left. Corresponding primitive-selection proba-
bilities p1, p2, p3, and p4 optimized by TransInv are shown below. See the main
text for interpretation.

and the strength was uniformly sampled from six levels at each iteration. We
followed the implementation adopted in [19], where each deformation has six
levels of strength.

Results: Table 1 shows the accuracies on the clean test set (i.e., no corrup-
tion applied) of CIFAR-100 when transferring from CIFAR-10 to CIFAR-100.
Compared to the baseline methods, the proposed TransInv demonstrates supe-
rior accuracies on the clean test set across most of the corruption categories.
This suggests that the target model tends to perform well when trained with
data augmentation to which the teacher is robust. Although the baseline mod-
els Fine-tuning with AugMix and Fine-tuning with FixedAug incorporate relatively
strong data augmentation during training, the pre-trained model may not be
necessarily robust to such augmentation. The mismatch in the robustness under
different data deformations between the teacher and the target models likely
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Table 2: Accuracies (%) on the clean CIFAR-100 test set in the multiple teacher
experiment (Section 4.3). TransInv uses three teacher models simultaneously.

Scratch RandAug[7] TeachAug[31] TransInv
81.2 83.3 83.2 83.5

explains the reason why these baseline methods underperform TransInv in most
cases.

The visualization of augmented data samples and optimized primitive selec-
tion probabilities is given in Fig.4. We show the cases of the Shot Noise teacher
model, which is robust to shot noise, and the Fog teacher model, which is robust
to foggy noise. In the Shot Noise case, it is evident from the optimized primitive
probabilities that the target model is trained with similar noise most frequently,
indicating a shared robustness between the teacher and target models. The Fog
case is a little harder to make similar observation, since a foggy noise is not
generated by a single image deformation defined here. However, qualitatively
speaking, some images generated by the contrast and brightness transformation,
which has the highest primitive-selection probability, somewhat resembles foggy
images.

4.3 Transfer learning with multiple teachers

We extended the proposed method to a scenario where multiple teacher mod-
els are employed. For L teacher models T 1, · · · , TL, we prepare corresponding
augmentation models Aϕ1,p1,q1 , · · · , AϕL,pL,qL . During the training of the tar-
get model, we optimized the selection probabilities r = [r1, · · · , rL]⊤ for the
augmentation models. This means that model Aϕk,pk,qk is selected with proba-
bility rk at a given iteration, similar to how the primitive selection probabilities
pi (i = 1, · · · ,K) are optimized.

In the experiment with TransInv, we utilized three teacher models (i.e., L =
3) including a CIFAR-10 pre-trained model, an ImageNet pre-trained model,
and the exponential moving average model of the target model itself. The target
model was trained from scratch on CIFAR-100. All models utilize WideResNet-
28-10 architecture.

Classification accuracies on the clean CIFAR-100 test set are presented in Ta-
ble 2. In the table, ‘Scratch’ denotes the model trained from scratch on CIFAR-
100 without data augmentation, ‘RandAug’ (‘TeachAug’) refers to the model
trained from scratch on CIFAR-100 with RandAug[7] (TeachAug [31]) data aug-
mentation techniques. ‘TransInv’ indicates the proposed method, which achieves
higher accuracy compared to the baseline methods. This result suggests that
TransInv effectively transfers the properties of multiple teacher models to a tar-
get model, resulting in improved performance on the CIFAR-100 dataset. In the
conventional transfer learning, known as network finetuning, it is not possible to
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utilize more than one pre-trained model, since the pre-trained model parameters
are directly updated in this process. In contrast, our method trains a new model,
while teacher model(s) guide the augmentation model to generate augmented
data. In this new scheme, arbitrary many teacher models can be accommodated
to produce a single target model. This scheme provides a flexibility of choosing
different teacher models in transferring invariant properties to a target model.
The performance boost shown in Table 2 is likely explained by the use of multi-
ple teacher models with distinct properties; namely, one trained on CIFAR-10,
another one trained on ImageNet, and the other being the exponential moving
average of the target model.

5 Conclusion

We proposed a novel transfer learning method, TransInv, which leverages data
augmentation to transfer the robustness of teacher model to target model. The
range of invariance exhibited by the teacher model is learned through a set
of augmentation primitives, whose parameters and selection probabilities are
optimized via gradient descent. These primitives are then utilized to generate
deformed images in the target domain, enabling the target model to learn and
acquire similar invariance. Our experimental results validate that target mod-
els trained using TransInv demonstrate similar invariance properties exhibited
by the teacher models. Overall, TransInv consistently outperform naive transfer
learning and data augmentation methods in terms of model performance. Fur-
thermore, we demonstrated that TransInv is capable of utilizing multiple teacher
models to transfer knowledge from diverse datasets, enhancing its versatility and
effectiveness in real-world scenarios.

As a future work, we will investigate the effectiveness on various target
datasets, although we demonstrated successful transfer from multiple teacher
models trained on different datasets in this work. Incorporating various image
domains, such as driving environment or human monitoring, is intriguing for
widening visual applications, as TransInv has a potential to generate robust and
light-weight models.
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