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Background & Contribution

Background

* Trends Iin increasing DNN model size.
 |ndustrial applications often demand:
= Real-time DNN inference
» Use of low-end device

Contribution

» We propose a novel non-uniform LSQ quantizer
(nuLSQ) for DNN compression.
* nuLSQ outperforms LSQ on CIFAR-10 and -100.

Existing Method

Learned Step-Size Quantization (LSQ) (esser, steven K.+. ICLR 2020]

Forward Pass
» Uniform quantization process in activations:
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Backward Pass Unit step function o ()
» Uniform step-size gradient approximated with
straight through estimator (STE).

Proposed Method

non-unform Learned Step-Size Quantization (nuLSQ)
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© nulLSQ can better approximate real activations by
introducing non-uniform quantization.

Forward Pass
* Non-uniform quantization process in activations:
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Backward Pass Non-uniform step sizes {s;}
* Non-uniform step-sizes gradient approximated with
straight through estimator (STE).
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» Quantized weight and activation.
* Measured mean test accuracy over the last 10 training
epochs.

Results

) nuLSQ outperforms LSQ under 2-, 3- and 4-bit
guantization.

Test accuracy of ResNet-20 on CIFAR10

2-bit 3-bit 4-bit Float
LSQ 84.5% 388.0% 88.7%
o
nulLSQ (ours) 85.2% 88.2% 88.9% 89.0%
Test accuracy of ResNet-56 on CIFAR100
2-bit 3-bit 4-bit Float
LSQ 63.4% 65.6% 65.7%
66.4%
nulSQ (ours) 64.1% 65.7% 66.8%

* Measured Shannon entropy of the quantized activation
outputs (the first and last layers are omitted).

Results

) nuLSQ demonstrates an overall 18% information gain
over the uniform LSQ.
= nulLSQ has a more uniformly distributed patterns.
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