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Evaluation
Exp-1: Performance Exp-2: Information Entropy

Settings

• Quantized weight and activation.

• Measured mean test accuracy over the last 10 training 

epochs.

Settings

• Measured Shannon entropy of the quantized activation 

outputs (the first and last layers are omitted).

Results

nuLSQ outperforms LSQ under 2-, 3- and 4-bit 

quantization. 

Results

Test accuracy of ResNet-20 on CIFAR10

Test accuracy of ResNet-56 on CIFAR100
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Background & Contribution

• Trends in increasing DNN model size.

• Industrial applications often demand:

▪ Real-time DNN inference

▪ Use of low-end device 

Background

Contribution
• We propose a novel non-uniform LSQ quantizer 

(nuLSQ) for DNN compression.

• nuLSQ outperforms LSQ on CIFAR-10 and -100.

Proposed Method
non-unform Learned Step-Size Quantization (nuLSQ)

☺ nuLSQ can better approximate real activations by 

introducing non-uniform quantization.
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• Non-uniform quantization process in activations:

• Non-uniform step-sizes gradient approximated with 

straight through estimator (STE).

Non-uniform step sizes 𝑠𝑖

Existing Method
Learned Step-Size Quantization (LSQ) [Esser, Steven K.+. ICLR 2020]

• Uniform quantization process in activations:
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• Uniform step-size gradient approximated with 

straight through estimator (STE).
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Shannon Entropy Comparison

LSQ 4bits Model nuLSQ 4bits Model

2-bit 3-bit 4-bit Float

LSQ 84.5% 88.0% 88.7%
89.0%

nuLSQ (ours) 85.2% 88.2% 88.9%

2-bit 3-bit 4-bit Float

LSQ 63.4% 65.6% 65.7%
66.4%

nuLSQ (ours) 64.1% 65.7% 66.8%
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☺
☺

nuLSQ demonstrates an overall 18% information gain 

over the uniform LSQ.

▪ nuLSQ has a more uniformly distributed patterns.
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