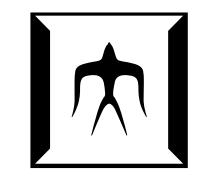
Learning Non-Uniform Step-Sizes for Neural Network Quantization

Recognition and Learning Algorithm Laboratory

J.R. Liang¹, S. Gongyo², M. Ambai², R. Kawakami¹, I. Sato^{1,2}

¹Tokyo Institute of Technology, ²Denso IT Laboratory, Inc.



Background & Contribution

Background

- Trends in increasing DNN model size.
- Industrial applications often demand:
 - Real-time DNN inference
 - Use of low-end device

Proposed Method

non-unform Learned Step-Size Quantization (nuLSQ) floating point 10^{3} nuLSQ High frequency

Contribution

- We propose a novel non-uniform LSQ quantizer (nuLSQ) for DNN compression.
- nuLSQ outperforms LSQ on CIFAR-10 and -100.

Existing Method

Learned Step-Size Quantization (LSQ) [Esser, Steven K.+. ICLR 2020]

Forward Pass

• Uniform quantization process in activations:

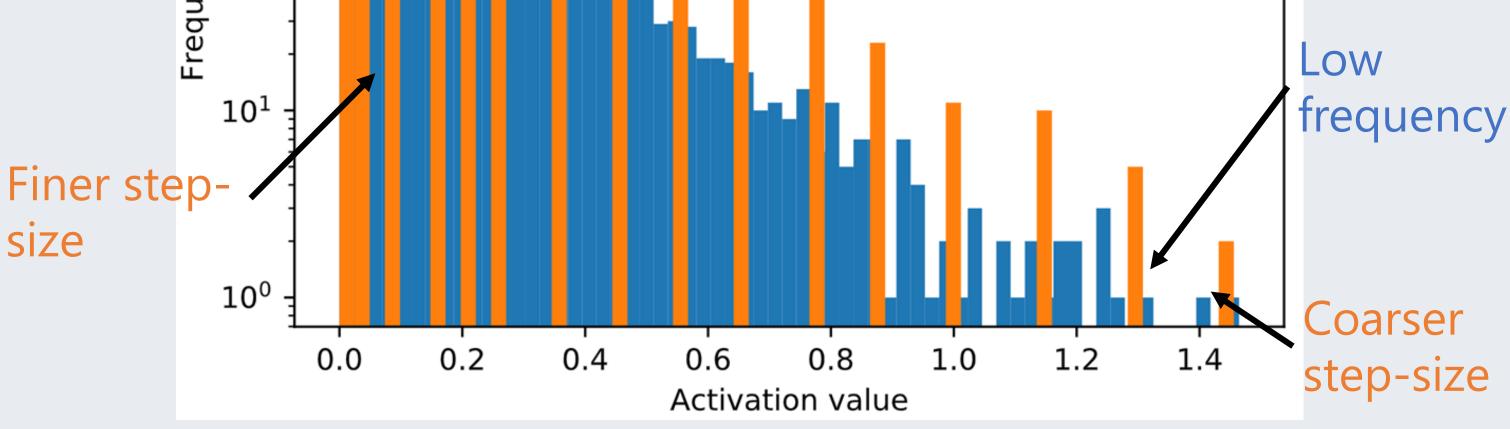
The number of step-size N

$$Q_{LSQ}(x, s) = \sum_{n=1}^{\infty} s\sigma(x - n)$$
Uniform step size s

Backward Pass

Unit step function $\sigma(\cdot)$

• Uniform step-size gradient approximated with straight through estimator (STE).



Inulse of the second introducing non-uniform quantization.

Forward Pass

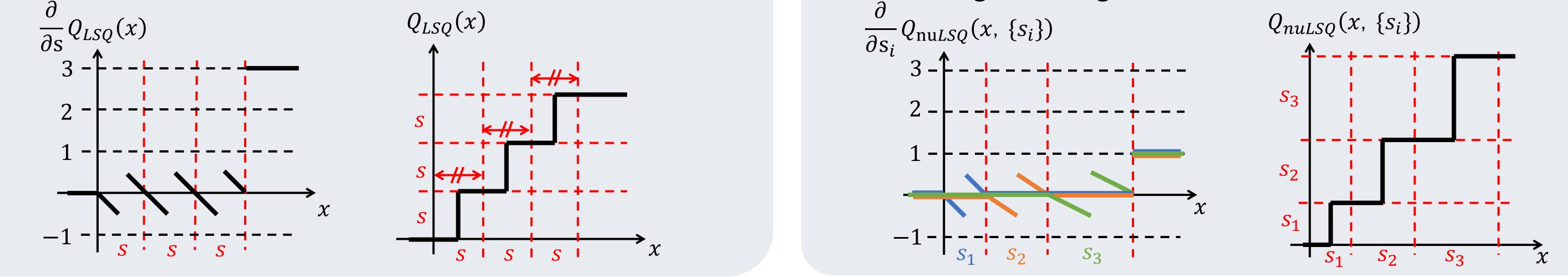
Non-uniform quantization process in activations:

$$Q_{nuLSQ}(x, \{s_i\}) = \sum_{n=1}^{N} s_n \sigma \left(x - \left(\sum_{m=1}^{n-1} s_m + \frac{s_n}{2} \right) \right)$$

Backward Pass

Non-uniform step sizes $\{s_i\}$

• Non-uniform step-sizes gradient approximated with straight through estimator (STE).



Evaluation

Exp-2: Information Entropy

Settings

- Quantized weight and activation.
- Measured mean test accuracy over the last 10 training epochs.

Exp-1: Performance

Results

(:) nuLSQ outperforms LSQ under 2-, 3- and 4-bit quantization.

Settings

• Measured Shannon entropy of the quantized activation outputs (the first and last layers are omitted).

Results

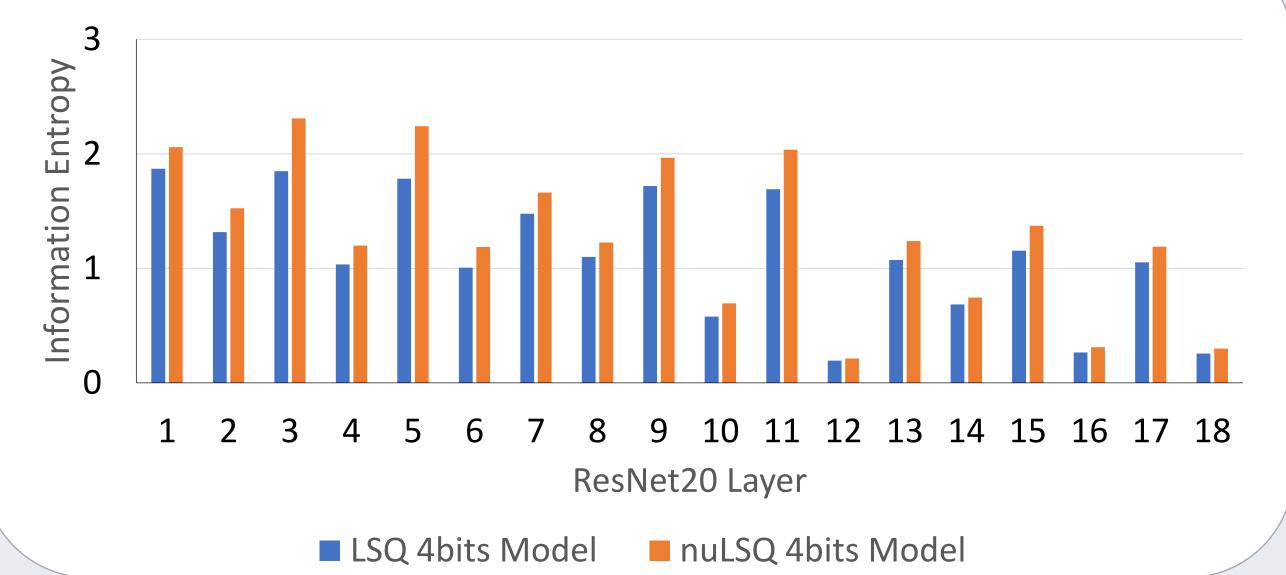
- (:) nuLSQ demonstrates an overall **18%** information gain over the uniform LSQ.
 - nuLSQ has a more uniformly distributed patterns.

Test accuracy of ResNet-20 on CIFAR10

	2-bit	3-bit	4-bit	Float
LSQ	84.5%	88.0%	88.7%	89.0%
nuLSQ (ours)	85.2%	88.2%	88.9%	

Test accuracy of ResNet-56 on CIFAR100

	2-bit	3-bit	4-bit	Float
LSQ	63.4%	65.6%	65.7%	66.4%
nuLSQ (ours)	64.1%	65.7%	66.8%	



This work is supported by DENSO IT LAB Recognition and Learning Algorithm Collaborative Research Chair (Tokyo Tech.).