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Abstract

It has been known by neuroscience studies that
partial and transient forgetting of memory often
plays an important role in the brain to improve
performance for certain intellectual activities. In
machine learning, associative memory models
such as classical and modern Hopfield networks
have been proposed to express memories as at-
tractors in the feature space of a closed recurrent
network. In this work, we propose learning with
partial forgetting (LwPF), where a partial forget-
ting functionality is designed by element-wise
non-bijective projections, for memory neurons
in modern Hopfield networks to improve model
performance. We incorporate LwPF into the at-
tention mechanism also, whose process has been
shown to be identical to the update rule of a cer-
tain modern Hopfield network, by modifying the
corresponding Lagrangian. We evaluated the ef-
fectiveness of LwPF on three diverse tasks such as
bit-pattern classification, immune repertoire clas-
sification for computational biology, and image
classification for computer vision, and confirmed
that LwPF consistently improves the performance
of existing neural networks including DeepRC
and vision transformers.

1 Introduction

Hopfield networks (Hopfield, 1982, 1984) have been pro-
posed to model associative memories as attractors in the
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feature space of a given closed neural network with an Ising-
type energy function. In practice, however, this classical
Hopfield network suffers a limitation of memory capacity,
in which the number of distinct memories is at most propor-
tional to the dimension of the feature space. To address this
issue, models with significantly increased memory capaci-
ties (e.g., exponential memory storage with respect to the
feature dimension) have been recently proposed (Krotov and
Hopfield, 2016; Demircigil et al., 2017; Krotov and Hop-
field, 2018; Barra et al., 2018; Agliari and De Marzo, 2020),
though there is a criticism about having many-body inter-
actions which is absent in the brain (Krotov and Hopfield,
2021).

Nearly at the same time that these modern Hopfield net-
works were proposed, Ramsauer et al. clarified that each
of the attention modules in the transformer (Vaswani et al.,
2017) is essentially equivalent to the process of the update
rule of a modern continuous Hopfield network (Ramsauer
et al., 2021), and their algorithm has been applied to vari-
ous tasks (Widrich et al., 2020; Fürst et al., 2021; Widrich
et al., 2021; Schäfl et al., 2021; Salvatori et al., 2021; Salem,
2021; Seidl et al., 2022; Millidge et al., 2022). Based on
their method and earlier works, Krotov and Hopfield de-
veloped a more general associative memory model (Krotov
and Hopfield, 2021), which we refer to as the large associa-
tive memory model. In this model, two-body interactions
between feature and memory neurons controlled by the cor-
responding pair of Lagrangian functions can express some
of existing associative memory models with and without
exponential memory capacity. As the model of Ramsauer
et al. can be reproduced by choosing a certain pair of La-
grangians (Krotov and Hopfield, 2021), there is still a room
to generate new models that possess preferable properties
in addition to large memory capacity by designing new La-
grangians.

In neuroscience, it has been known that associative memo-
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Figure 1: Memory neurons hµ and feature neurons vi. (a) Clean interaction ξµi between hµ and vi in the large associative
memory model (Krotov and Hopfield, 2021). (b) Proposed partially degraded interaction where some memory neurons are
degraded. (c) Partial forgetting function D for degrading memory neurons. D is characterized by forgetting region F , where
memory neurons forget what the output should be. An example of D : R → R is visualized.

ries are encoded in sets of neurons and their interconnections
(Miry et al., 2021; Josselyn and Tonegawa, 2020; Poo et al.,
2016). In addition, the dynamics and stability of memory
in human brains have been modeled by attractor dynamics
of networks of the neurons (Pereira and Brunel, 2018; Wu
et al., 2018; Seeholzer et al., 2019; Spalla et al., 2021). On
the other hand, the brain experiences forgetting; i.e., partial
information losses occur to memories. Forgetting might be
just seen as a process to somehow spoil memories at first
glance, but recent studies indicate that partial and transient
forgetting plays a crucial role in the brain to improve per-
formance for certain intellectual activities (Sabandal et al.,
2021; Hirashima and Nozaki, 2012). Such findings from
neuroscience motivate us to model partial forgetting func-
tionality with modern Hopfield networks and examine how
the performance of a model trained with partial forgetting
changes. Interestingly, we experimentally confirmed that
models with the proposed partial forgetting functionality
consistently improve the performance of existing neural
network models.

Our contributions are three-fold:

1. We propose learning with partial forgetting (LwPF)
for modern Hopfield networks by introducing a par-
tial forgetting function to the Lagrangian to partially
eliminate information from memory neurons.

2. We modify the attention mechanism with the proposed
partial forgetting functionality. From the large asso-
ciative memory model (Krotov and Hopfield, 2021),
we derive the expression for partially forgetting atten-
tion, which only slightly modifies the argument of the
softmax with the partial forgetting function.

3. We demonstrate the effectiveness of LwPF on three di-
verse tasks, namely bit-pattern classification, immune
repertoire classification for computational biology, and
image classification for computer vision. We show that
LwPF improves the performance of existing models, in-
cluding a modern Hopfield network DeepRC (Widrich
et al., 2020) and vision transformers (Dosovitskiy et al.,

2021; Touvron et al., 2021).

2 Background

To fix notations, we here provide a derivation of the attention
mechanism in transformers from a continuous Hopfield net-
work. The update rule of the neurons and the corresponding
energy function will coincide with the modern continuous
Hopfield network discussed by Ramsauer et al. (2021), in
which the modern Hopfield network is identified with the
attention modules in transformers. We will utilize this fact
in Sec. 3.2.

2.1 Overview of Large Associative Memory Model

Let us first briefly review the large associative memory
model proposed by Krotov and Hopfield (2021). In this
system, dynamical variables are composed of Nv visible
feature neurons and Nh hidden memory neurons both con-
tinuous,

v :U(⊂ R) → RNv , (1)

h :U(⊂ R) → RNh . (2)

The interaction matrix

ξ ∈ RNh×Nv (3)

governs the way that visible and hidden neurons change
over time as illustrated in Fig. 1a. With the relaxing time
constants of the two groups of neurons τv and τh, the model
is described by the following differential equations,

τv
dvi(t)

dt
=

Nh∑
µ=1

ξiµfµ(h(t))− vi(t), (4)

τh
dhµ(t)

dt
=

Nv∑
i=1

ξµigi(v(t))− hµ(t), (5)

where the argument t is thought of as “time”, and the ac-
tivation functions f and g are determined by Lagrangians
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Lh : RNh → R and Lv : RNv → R, such that

fµ(h) =
∂Lh(h)

∂hµ
, gi(v) =

∂Lv(v)

∂vi
. (6)

The canonical energy function for this system is given as

E(v, h) =

Nv∑
i=1

vigi(v)− Lv(v)

+

Nh∑
µ=1

hµfµ(h)− Lh(h)−
∑
µ,i

fµξµigi. (7)

One can easily confirm that this energy function monotoni-
cally decreases, i.e.,

dE(v(t), h(t))

dt
≤ 0, (8)

along the trajectory of the dynamical equations, provided
that the Hessians of the Lagrangians are positive semi-
definite.

In addition to this, if the overall energy function is bounded
from below, the dynamical equations are guaranteed to con-
verge to a fixed point attractor state, which corresponds
to one of the local minima of the energy function. The
formulation of networks in terms of Lagrangians and an
associated energy function enables us to easily experiment
with different choices of the activation functions and differ-
ent architectural arrangements of neurons.

2.2 Attention Mechanism

Suppose we have a fixed interaction matrix ξµi, then the
system is defined by the choice of Lagrangians Lh and Lv.
Krotov and Hopfield demonstrated that the specific choice
of Lagrangians called “model B” in their paper (Krotov
and Hopfield, 2021) reproduces the attention mechanism in
transformers (Vaswani et al., 2017). This model is given by
the following Lagrangians:

Lh(h) = log
∑
µ

ehµ , Lv(v) =
1

2

∑
i

v2i . (9)

For these Lagrangians, the activation functions are

fµ(h) =
∂Lh

∂hµ
=

ehµ∑
ν e

hν
= softmax(hµ), (10)

gi(v) =
∂Lv

∂vi
= vi. (11)

Now we assume the adiabatic limit, τv ≫ τh, which means
that the dynamics of hidden memory neurons is much faster
than that of visible feature neurons, i.e., we can take τh → 0:

Eq. (5) ⇝ hµ(t) =

Nv∑
i=1

ξµivi(t). (12)

Substituting the above expression into the other dynamical
equation and discretizing it by taking ∆t = τv, then we
obtain the update rule for feature neurons,

vi(t+ 1) =

Nh∑
µ=1

ξiµ softmax

 Nv∑
j=1

ξµjvj(t)

 . (13)

The energy function is also determined by the Lagrangians:

E =
1

2

Nv∑
i=1

v2i − log

(∑
µ

exp

(∑
i

ξµivi

))
. (14)

This update rule and the energy function coincide (up to
some constants) with Ramsauer et al. (2021). Ramsauer et
al. showed that a single update of vi with the update rule in
Eq. (13) is identical to the process of an attention module
up to a linear projection when one regards vj and ξµj to
be query and key matrices, respectively. That is, the linear
transformations of a feature X in attention mechanism to
query and key correspond to v and ξ in this paper. Accord-
ing to Ramsauer et al. (2021), another linear transformation
of ξ can be identified with the value matrix V . More specif-
ically, we can explicitly write down the identifications as
follows. (Note that the notations are bit different from those
by Ramsauer et al. (2021).) In Eq. (13), we have

v⃗(t) ∈ RNv , ξ = (ξ⃗1, . . . , ξ⃗Nh
)⊤ ∈ RNh×Nv . (15)

Let us rewrite Nh to N and Nv to D. Suppose we have a
set of N features X := (x⃗1, . . . , x⃗N )⊤ ∈ RN×F and for
certain WQ, WK ∈ RF×D the linear projections give

v⃗ν = x⃗νWQ, ξ⃗µ = x⃗µWK . (16)

With v := (v⃗1, . . . , v⃗N )⊤ ∈ RN×D and another matrix
W ′

V ∈ RD×D, we have an identification

Q := v = XWQ, (17)
K := ξ = XWK , (18)
V := ξW ′

V = XWKW ′
V . (19)

By letting WV = WKW ′
V , one obtains the formulation of

conventional attention mechanism.

3 Learning with Partial Forgetting

In this section, we propose learning with partial forgetting
(LwPF) that add a novel partial forgetting mechanism to
the large associative memory model. In LwPF, the partial
forgetting functionality is defined in a specific way so that
one can control the amount of information carried by the
memory neurons being lost along the interaction with the
feature neurons.
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Partial forgetting. Over the hidden memory neurons hµ,
we introduce partial forgetting function D and define de-
graded memory neurons h̃µ as

h̃µ := D(hµ). (20)

We designed D to be an element-wise function to model
partial forgetting functionality for the memory neurons. The
partial forgetting function D is identity everywhere except
for forgetting region F ⊂ R, where the value carried by the
memory neuron cannot be reconstructed,

D(x;F, b) =

{
b (x ∈ F )

x (otherwise)
, (21)

where b is a constant bias. As this is a non-bijective func-
tion (as long as F ̸= ∅), neurons cannot retrieve the value
x fallen into the forgetting region F . An example of the
forgetting function is shown in Fig. 1c. We will later give
specific definitions of F and b, including a stochastic ver-
sion, where F and b are randomly sampled from a p.d.f.
depending on minibatch statistics at each training iteration,
motivated by the partial and transient forgetting in the brain.

Model. Associated with the degradation of memory neurons
(i.e., partial forgetting function D), the Hopfield model of
our interest (Fig. 1b) is then described by the following
differential equations,

τv
dvi(t)

dt
=

Nh∑
µ=1

ξiµf̃µ(h(t))− vi(t), (22)

τh
dhµ(t)

dt
=

Nv∑
i=1

ξµigi(v(t))− hµ(t), (23)

where the activation function gi for the feature neurons
is kept intact, and f̃µ is our degraded activation function
defined through Lagrangian Lh and h̃ as

f̃µ(h) =
∂Lh(h̃)

∂hµ
=

∂Lh(D(h))

∂hµ
. (24)

If there is no overlap between F and the values that h takes,
then D practically becomes the identity function, and this
model turns out to be equivalent to the large associative
memory model reviewed in the previous section.

3.1 Characteristics of Degradation: Forgetting
Regions

Our partial forgetting function is characterized by two com-
ponents: forgetting region F and constant bias b. In the
brain, forgetting would be likely a stochastic process in
which information loss occurs with some probability, and
we mimic such a property by introducing stochastic forget-
ting region, which is randomly defined iteration by iteration.

Figure 2: Partial forgetting functions. (a) ReLU as partial
forgetting function, where forgetting region F is the neg-
ative real numbers R<0. (b) PFU, where z is randomly
sampled from the Gaussian distribution N (m,σ2).

In particular, we introduce specific ways of forgetting de-
pending on different degrees of stochasticity as described
below, and we will provide comparative experiments in the
next section.

ReLU. With a fixed forgetting region F = {x : x < 0}
and the zero bias b = 0, the partial forgetting function turns
out to be the ReLU function: D(x;F, b) = ReLU(x) (see
Fig. 2a). This is one of the simplest examples of partial
forgetting where memory neurons do not respond to nega-
tive inputs. The forgetting region F and the bias b is fixed
here, which means that the partial forgetting occurs in a
deterministic way for this function.

Partial Forgetting Unit (PFU). To incorporate randomness
into partial forgetting, we propose PFU. It employs a forget-
ting region F = {x : x < z} and a bias b = z where z is
a random variable of Gaussian distribution N (m,σ2) (see
Fig. 2b). The choice of m is based on the distribution of the
features, that is, it is basically designed to take the median
of the features, m = x̄median, where x̄median is the median of
inputs dynamically computed from a minibatch of a dataset.
We left σ as a hyperparameter. In the testing phase, we set
z = m to make the inference deterministic. We empirically
found that m = x̄median performs well in some tasks (see
Sec. 4.2), and m = 0 in some other tasks (see Sec. 4.3 for
details) as a special case.

Let us make some remarks in order. As we will see, in our
formulation the outputs of memory neurons in the forgetting
region still supply positive values in the denominator of
softmax in Eq. (25) when b is finite, so it may be better to
take b = −∞ as a model of artificial neural network. If
we define b = −∞, contributions to the denominator from
neurons in the forgetting region completely vanish so that
the χ(hµ)softmax(D(hµ)) is normalized to 1, which might
look more meaningful. In this paper, however, we do not
do so by the following two reasons. The first reason is that
it becomes difficult to distinguish whether forgetting has
occurred or not. If one takes b = −∞, the output of the
modified softmax is still normalized to one. Therefore, we
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cannot distinguish whether the forgetting has occurred or
just the softmax has quite small entries. The second reason
is that if b = −∞, the output gets to be indefinite when all
the memory neurons falls into the forgetting region. With a
finite b, the output is always well-defined, even when all the
entries of an input happen to be forgotten. For such a case,
the output will become zero vector, which clearly means the
input is completely forgotten. Actually, this situation really
occurs in Sec. 4.2.

To summarize, we model partial forgetting functionality by
introducing an element-wise non-bijective function (partial
forgetting function with forgetting region) as follows: When
a memory neuron takes a value in the forgetting region, the
degraded activation will replace the value with the cutoff
value b. If memory neurons do not fall into the forgetting re-
gion, they are kept intact. Motivated by the fact that the brain
experiences transient forgetting, we introduced randomness
in PFU, aside from simple ReLU. When the forgetting re-
gion is fixed (deterministic) and set to be the entire negative
values, the forgetting function turns out to be ReLU, and we
propose PFU as an extension of ReLU to deal with stochas-
tic behavior of forgetting functionality and distributions of
features with non-zero median. Our model can be viewed as
an extended version of the original large associative memory
model (Krotov and Hopfield, 2021) because the symmetric
relation of the interaction weight matrices will be effectively
broken in our model. This extension seems reasonable in
the sense that it incorporates not only memory retrieval but
also forgetting functionality.

3.2 Partially Forgetting Attention

We now introduce a new attention mechanism with LwPF.
As reviewed in Sec. 2.2, to obtain the attention mechanism
from the large associative memory model, one needs to
use the Lagrangians in Eq. (9). We modify the activation
function for the degraded memory neuron h̃ as

f̃µ(h) =
∂Lh(h̃)

∂hµ
= χ(hµ)softmax(D(hµ)), (25)

where χ is the differential of D and given by the indicator
function about F c = R \ F :

χ(x) =

{
0, x ∈ F,

1, x ∈ F c.
(26)

By this indicator function χ, the values of the hidden neu-
rons fallen into the forgetting region are completely lost, i.e.,
f̃µ(h) = 0 for hµ ∈ F .

We again assume the adiabatic limit, τv ≫ τh, and integrate
out the hidden memory neurons. Then, from Eq. (22) we
have

τv
dvi
dt

=

Nh∑
µ=1

ξiµχ(hµ)softmax(D(hµ))− vi, (27)

with hµ =
∑

k ξµkvk. The energy function of this system
is given as:

E =
1

2

Nv∑
i=1

v2i − log

(∑
µ

exp

(
D

(∑
i

ξµivi

)))
.

(28)

By defining an index set M := {µ : χ(hµ) = 1}, which
picks up the undegraded memory neurons, Eq. (27) simpli-
fies to

τv
dvi
dt

=
∑
µ∈M

ξiµsoftmax

(
D

(∑
k

ξµkvk

))
− vi.

(29)

This means that all the interactions except for those in the
forgetting region can be written in the almost same way as in
the previous section, and now the partial forgetting function
is involved in the argument of the softmax. Discretizing
this differential equation by taking ∆t = τv , we eventually
obtain the update rule for the feature neurons, which is es-
sentially the attention mechanism in transformers, but with
slight modification. More specifically, the former attention

Zij =
∑
µ

Viµsoftmax(β
∑
k

KµkQkj), (30)

where β is a scaling factor, and Qij ,Kiµ, Viµ are query, key,
and value matrices, respectively, becomes

Zij =
∑

µ∈Mj

Viµsoftmax(D(β
∑
k

KµkQkj)), (31)

where Mj = {µ : χ(β
∑

i KµiQij) = 1} in our model.
This expression may imply that the non-bijective projections
by the partial forgetting function D remove information
from features lying below a cutoff value, which is either
deterministic or stochastic aiming that the learned network
roughly identifies more relevant and less relevant features
for a given sample.

4 Experiments

In this section, we embed the partial forgetting functionality
in modern Hopfield networks to investigate how the model
performance changes in various data domains. We demon-
strate the effectiveness of LwPF for three diverse tasks,
namely (1) bit pattern classification, (2) immune repertoire
classification, and (3) image classification. The first one
is a toy problem. We apply the proposed LwPF to small
Hopfield networks (Ramsauer et al., 2021) to provide an
evidence that LwPF improves training performance. The
second one is a real-world problem from computational bi-
ology. We apply LwPF to DeepRC (Widrich et al., 2020),
a medium-sized modern Hopfield network. The third one
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Figure 3: Demonstration of bit-pattern classification. Evaluation accuracy (%) and training loss are shown. The proposed
LwPF was applied to Hopfield networks, each with modern Hopfield layers, Hopfield pooling layers, or Hopfield lookup
layers. Results are for default and adapted hyperparameter settings.

is a real-world problem from computer vision. We intro-
duce LwPF to vision transformers (Dosovitskiy et al., 2021;
Touvron et al., 2021), large state-of-the-art neural networks.
All the baseline models are a form of the large associative
memory model by Krotov and Hopfield. The model of Ram-
sauer et al. (2021), the baseline of Sec. 4.1, the model of
Widrich et al. (2020), the baseline of Sec. 4.2, and the vision
transformer considered in Sec. 4.3 are all neural network
architectures that consist of attention mechanism as a com-
ponent. All the attention blocks in these models are regarded
as realizations of the model B of large associative memory
model by Krotov and Hopfield (Sec. 2.2). In each experi-
ment, we chose a specific optimizer that matches the one
used in the corresponding baseline so that the comparison
is as fair as possible. Other experimental settings, such as
learning rate, weight decay, optimizer-specific hyperparam-
eters, etc., are also the same as the corresponding baselines.
One exception is the batch size used in the image classifica-
tion task. We reduce the batch size because we encountered
a memory issue when the original batch size is used in our
environment. We present and discuss the main results below.
Some details are presented in the supplementary materials.

4.1 Bit pattern classification

Motivation. The goal of this subsection is to provide the
first evidence that LwPF improves the training performance
of Hopfield networks. We use a simple toy dataset and small
network architectures.

Task and measure. Bit pattern classification is a binary
classification task in the domain of multiple instance learn-

ing. We use the bit pattern dataset provided by Ramsauer
et al. (2021). It consists of a collection of bit pattern in-
stances, each of which is a sequence of zeros and ones. The
positive class has specific bit patterns, which are absent in
the negative one. All dataset parameters are default ones,
that is, the dataset has 8-bit sequences, 2,048 bags (1,536
for training and 512 for evaluation), 16 instances per bag, 8
unique instances indicative for the positive class, and one
signal implanted into one bag of the positive class. We
report training loss and evaluation accuracy.

Network architecture. We use three Hopfield networks pro-
vided in the official hflayers implementation by Ram-
sauer et al. (2021). They consist of (1) a modern Hop-
field layer, (2) a Hopfield pooling layer, and (3) a Hopfield
lookup layer, respectively, each followed by a linear projec-
tion for binary classification. Two architecture parameter
settings, namely the default settings (DS) and the adapted
settings (AS), are used for evaluation. DS uses the default
parameters implemented with hflayers. AS adapts three
Hopfield update steps, an increased number of heads, and
separated weights for lookup. Details are presented in Ap-
pendix A. LwPF is introduced to the attention mechanism
in the Hopfield update steps with m = x̄ median, σ = 0.01
and b = z.

Training. The AdamW optimizer (Loshchilov and Hutter,
2019) with a learning rate of 10−3, a weight decay of 0.01
and (β1, β2) = (0.9, 0.999) is used for 1,500 steps. The
objective function to be minimized is binary cross-entropy
loss.

Results. Figure 3 shows the results. It can be seen that
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Table 1: Immune repertoire classification results for CMV dataset (Emerson et al., 2017). The area under the curve
(multiplied by 100) is reported with the standard deviation across five cross-validation folds. nc: kernel size. nk: number of
kernels. Baseline uses DeepRC (Widrich et al., 2020) (the official implementation is used). LwPF applies the proposed
partial forgetting function to the baseline.

Method nc = 7 nc = 9

nk = 8 nk = 16 nk = 32 nk = 8 nk = 16 nk = 32

Baseline 75.01±2.33 73.45±1.13 79.13±0.85 80.39±0.34 76.67±3.52 82.06±0.47

LwPF (ReLU) 79.64±0.97 74.62±1.11 50.00±0.00 80.36±0.89 50.00±0.00 80.86±0.59

LwPF (PFU) 76.90±1.07 75.64±1.32 82.20±0.90 80.92±0.50 82.81±0.55 83.14±0.38

LwPF with ReLU and PFU achieve a lower training loss
than the baseline in all settings. This shows that LwPF
improves the training performance of the modern Hopfield
networks.

The best performing method transitions from the baseline
to LwPF with ReLU and then LwPF with PFU as the net-
work size increases, i.e., the baseline performs the best for
the smallest case (DS with modern Hopfield layer), ReLU
performs the best for the second smallest case (DS with
Hopfield pooling layer), and PFU performs the best for the
other cases. This suggests that the optimal partial forget-
ting function depends on the number of network parameters.
These results indicate that LwPF with ReLU should be used
for small networks, and PFU should be used for relatively
large networks.

4.2 Immune repertoire classification

Motivation. This demonstration aims to show the effective-
ness of LwPF for a real-world task with a medium-sized
network (∼10k parameters). We apply LwPF to DeepRC
(Widrich et al., 2020), a modern Hopfield network.

Task and measure. Immune repertoire classification is
a problem of multiple instance learning in computational
biology. We follow the problem settings by Widrich et al.
(2020), in which a neural network predicts the immune
status based on the input immune repertoire represented by
bags of immune receptor sequences. The real-world CMV
dataset (Emerson et al., 2017), which consists of T-cell
repertoire with known cytomegalovirus serostatus, is used
for evaluation. The number of subjects is 666. The average
number of sequences per immune repertoire is about 300k.
We report the area under the curve (AUC) across five-fold
cross-validation.

Network architecture. We use DeepRC, a modern Hop-
field network architecture proposed by Widrich et al. (2020).
It consists of an input layer that concatenates amino-acid
features and position features, a 1D convolutional block
with a head to take the maximum value over sequence po-
sitions, a sequence of attention blocks with a head to take
the summation, and a linear layer to perform binary clas-

sification. More details are presented in Appendix B. Ex-
periments are conducted with all combinations of nc = 7, 9
and nk = 8, 16, 32, where nc and nk are the kernel size and
the number of kernels for convolution, respectively. LwPF
is introduced to the sequence of the attention block with
m = x̄ median, σ = 0.01 and b = z.

Training. We use the official implementation of DeepRC
and the recommended training hyper-parameters, i.e., the
Adam optimizer (Kingma and Ba, 2015) is used with
learning rate of 10−4 without weight decay, (β1, β2) =
(0.9, 0.999), and batch size of 4 for 105 steps. The objective
function to be minimized is cross-entropy loss.

Results. Table 1 summarizes the results. It can be seen that
LwPF with PFU always outperforms the baseline. ReLU
performs the best with the smallest settings (nc = 7, nk =
8), and PFU performs the best with the others. This tendency
is the same as that for bit pattern classification in Sec. 4.1.

A limitation of ReLU can also be seen. The results of LwPF
with ReLU are indeed very sensitive to the experimental
setting and ReLU fails in training with some settings (e.g.,
nc = 7, nk = 32), in which M = ∅, i.e., all the inputs fall
into the forgetting region, during training. This limitation is
avoided for PFU by stochastic forgetting region and taking
the dynamic median of the inputs as m = x̄median. The
results above indicate that PFU is stable and thus recom-
mended for medium-sized networks in practice.

4.3 Image classification

Motivation. In this subsection we demonstrate the effective-
ness of LwPF for a real-world problem from computer vi-
sion. We incorporate LwPF into vision transformers, which
are large state-of-the-art neural networks in computer vision
with ∼100M parameters.

Task and measure. In image classification, a fundamental
problem in computer vision, the aim is to classify images
into a pre-defined finite number of categories. We use the
CIFAR-10 and CIFAR-100 datasets (Krizhevsky, 2009),
each of which consists of 60,000 natural images. The image
size is 32 × 32. The ground-truth object category labels
are attached to each image. The number of categories is
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Table 2: Image classification accuracy (%).

Method ViT-B

CIFAR-10 CIFAR-100

Baseline 89.40 65.45
LwPF (ReLU) 90.39 65.39
LwPF (PFU) 90.17 65.82

10 for CIFAR-10 and 100 for CIFAR-100. We report the
classification accuracy (%) for each dataset.

Network architecture. We use the vision transformer (ViT),
the transformer network for image classification proposed
by Dosovitskiy et al. (2021); Touvron et al. (2021). We use
Vit-Base (B), whose number of parameters and the number
of attention heads are 86.6M and 12 heads. More details are
presented in Appendix C. LwPF is introduced to all attention
blocks of the transformer encoders with m = 0, σ = 1.0
and b = 0. We fixed m to zero in this task to efficiently run
experiments with multiple GPUs without synchronization
at each partial forgetting function.

Training. We follow the training settings by Touvron et al.
(2021). Images are resized to 224 × 224. The SGD opti-
mizer is used with a learning rate of 0.01 and a weight decay
of 10−4 for 1,000 epochs. The batch size is 192. The ob-
jective function to be minimized is cross-entropy loss. The
implementation of PyTorch Image Models timm (Wight-
man, 2019) is used. All experiments are conducted with
four NVIDIA V100 GPUs.

Results. Table 2 shows the results. LwPF with ReLU
or PFU consistently improve the performance of the vision
transformer. This confirms the effectiveness of our approach
using the Hopfield-based formulation for state-of-the-art
transformers in computer vision.

From Table 2, one finds that LwPF with ReLU decreases
the performance with CIFAR-100. This tendency is in a
sense similar to the results for the bit pattern classification
and immune repertoire classification. As in the previous
two experiments, ReLU performs the best with the simplest
settings, and PFU performs the best with the others. In addi-
tion, these empirical evaluations seem to be very interesting.
Although the modification of the vision transformer is rela-
tively simple, the Table 2 indicates that the proposed LwPF
with CIFAR-10 achieves more than 90% accuracy, while in
the range of hyperparameters considered in our experiments
the typical results of the vision transformer on CIFAR-10
would be in the lower 80% range. These results indicate
that LwPF can improve the performance of state-of-the-art
vision transformers, but the partial forgetting function needs
to be carefully designed. Further discussion is provided in
the next section.

5 Discussion and Limitation

For improving the performance of modern Hopfield net-
works, we proposed LwPF which implements partial for-
getting functionality for memory neurons during training.
We also introduced a new attention mechanism with the
partial forgetting functionality as a natural extension. We
demonstrated the effectiveness of LwPF on three diverse
tasks and showed that LwPF improves the performance of
existing models including DeepRC and vision transform-
ers. It is remarkable that the performance of these models
gains such large improvements just by simply changing the
feedforward operation.

From a neuroscientific point of view, partial and transient
forgetting plays a crucial role in the brain to improve perfor-
mance for certain intellectual activities. This work provides
analogous evidences that modern Hopfield network mod-
els equipped with our forgetting functionality consistently
outperform the counterparts without such a functionality.
Training with this forgetting functionality could prioritize
a type of features that are indispensable for a large portion
of data in a way that the activation values become relatively
large so as to gain robustness against the partial forgetting.
In other words, the network would reduce the probability
of losing these information by entering the stochastic for-
getting region, and such an implicit mechanism may bring
positive effects for testing. Below, we discuss limitations
and broader impacts.

Limitations. One limitation of LwPF is that the perfor-
mance depends on the choice of partial forgetting function
D and its hyperparameters. Although we demonstrated an
improvement in performance for three distinct tasks used
artificial data, biological data, and image data, the best per-
forming partial forgetting function depends on each task.

Another limitation of this work lies in the narrowed focus on
the attention mechanism. We applied LwPF to the attention
mechanism because many state-of-the-art methods rely on
it. However, the framework itself can be applied to other
types of Hopfield networks including modern extensions
(Millidge et al., 2022; Tang and Kopp, 2021; Krotov, 2021).

Broader impacts. Transformers are the novel state-of-the-
art neural network models in almost all the domains of com-
puter science and machine learning in these days. Our work
provides a variant of transformers through the update rule of
modern Hopfield networks equipped with partial forgetting
functionality. From this point of view, we can further study
the fundamental properties of the novel attention mechanism
in state-of-the-art models by mapping them to the dynamics
of Hopfield networks, which are more transparent neural
network models. In addition, this perspective enables us to
explore more efficient and generalizable transformer models
in a transparent way, not in ad hoc ways from tasks to tasks.

Since our experiments were designed to verify the formu-
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lation of our proposed LwPF, we believe that our results
do not directly cause harm to society, while they can be
of use to develop new transformer architectures. It is ex-
pected that a more promising Hopfield model with a set of
Lagrangians and an energy function will be a good starting
point to pursue new state-of-the-art neural network models.
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bert Ramsauer, Lukas Gruber, Markus Holzleitner, Jo-
hannes Brandstetter, Geir Kjetil Sandve, Victor Greiff,
Sepp Hochreiter, and Günter Klambauer. Modern hop-
field networks and attention for immune repertoire classi-
fication. In H. Larochelle, M. Ranzato, R. Hadsell, M.F.

Balcan, and H. Lin, editors, Advances in Neural Informa-
tion Processing Systems, volume 33, pages 18832–18845.
Curran Associates, Inc., 2020.

Michael Widrich, Markus Hofmarcher, Vihang Prakash
Patil, Angela Bitto-Nemling, and Sepp Hochreiter. Mod-
ern hopfield networks for return decomposition for de-
layed rewards. In Deep RL Workshop NeurIPS 2021,
2021.

Ross Wightman. Pytorch image models.
https://github.com/rwightman/
pytorch-image-models, 2019.

Yan Wu, Gregory Wayne, Karol Gregor, and Timothy Lilli-
crap. Learning attractor dynamics for generative memory.
Advances in Neural Information Processing Systems, 31,
2018.

https://github.com/rwightman/pytorch-image-models
https://github.com/rwightman/pytorch-image-models


Toshihiro Ota, Ikuro Sato, Rei Kawakami, Masayuki Tanaka, Nakamasa Inoue

Learning with Partial Forgetting in Modern Hopfield Networks:
Supplementary Materials

Appendix A: Modern Hopfield networks for bit pattern classification

This section reviews the three Hopfield layers (Ramsauer et al., 2021) to explicitly show how LwPF is introduced to them.
We also provide hyperparameter settings.

LwPF for Hopfield layers. The first Hopfield layer (Hopfield) is a layer for propagating a set of vectors via query
patterns R = (r1, · · · , rS)⊤ ∈ RS×dr and key patterns Y = (y1, · · · ,yN )⊤ ∈ RN×dy as

Z = softmax(βRWQW
⊤
KY ⊤)Y WV , (32)

where WK ∈ Rdy×dk ,WQ ∈ Rdr×dk ,WV ∈ Rdy×dv are matrices for Hopfield-based propagation, β > 0 is a scaling
parameter, and S, dr, N, dy, dk ∈ N>0 denote dimensions. LwPF is introduced to it as

Zij =
∑

µ∈Mj

[softmax(D(βRWQW
⊤
KY ⊤))]µj [Y WV ]iµ, (33)

where Mj = {µ : [χ(βRWQW
⊤
KY ⊤)]µj = 1}, and [·]ij denotes the (i, j) element of a matrix.

The Hopfield pooling layer (HopfieldPooling) is a layer for propagating patterns via the key patterns Y ∈ RN×dy as

Z = softmax(βQW⊤
KY ⊤)Y WV , (34)

where Q ∈ RS×dk , WK ∈ Rdy×dk ,WV ∈ Rdy×dv . LwPF is introduced to it as

Zij =
∑

µ∈Mj

[softmax(D(βQW⊤
KY ⊤))]µj [Y WV ]iµ. (35)

where Mj = {µ : [χ(βQW⊤
KY ⊤)]µj = 1}.

The Hopfield lookup layer (HopfieldLayer) is a layer for propagating a vector or a set of vectors via query patterns
R ∈ RS×dr as

Z = softmax(βRW⊤
K )WV , (36)

where WK ∈ Rdy×dr ,WV ∈ Rdy×dv . LwPF is introduced to it as

Zij =
∑

µ∈Mj

[softmax(D(βRW⊤
K ))]µj [WV ]iµ. (37)

where Mj = {µ : [χ(βRW⊤
K )]µj = 1}.

Hyperparameters. Table 3 summarizes the two hyperparameters settings, DS and AS, described in Sec. 4.1. We used the
official implementation1 for running experiments.

1https://github.com/ml-jku/hopfield-layers
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Table 3: Hyperparameters for DS and AS

Hyperparameter DS AS

Size of input 8 8
Size of association space (hidden size) 8 8
Number of parallel association heads 1 8
Number of updates in one Hopfield head 0 3
Scaling parameter 1.0 0.25
Dropout parameter 0.0 0.5

Separated lookup weights False True
Trainable lookup targets True False

Appendix B: DeepRC for immune repertoire classification

This section reviews the DeepRC architecture. Table 4 shows the architecture of DeepRC, which takes amino acid features
and position features as inputs and performs binary classification. LwPF is applied to its attention, that is,

Z = softmax(βQK⊤)V , (38)

is replaced by

Zij =
∑

µ∈Mj

[softmax(D(βQK⊤))]µjViµ. (39)

where Mj = {µ : [χ(βQK⊤)]µj = 1}. The detailed architecture of the 1D-CNN and SNN blocks can be found in the
official implementation of DeepRC2. All training hyperparameters are default and not tuned with LwPF.

Table 4: Architecture of DeepRC

Formulation Shape

Amino acid features Xa (N, d, 20)
Position features Xp (N, d, 3)
Concatenation layer X = [Xp;Xa] (N, d, 23)
1D-CNN block (1 layer, nk kernels, nc kernel size) H = CNN(X) (N, d, nk)
Max pooling V = MaxPool(H) (N,nk)
SNN block (2 layer, 32 features) K = SNN(V ) (N, 32)
Attention Z = softmax(βQK⊤)V (N,nk)
Summation s = Sum(Z) (nk)
Linear projection p = Linear(s) (1)

Appendix C: Vision transformers for image classification

This section reviews vision transformer (ViT) architectures (Dosovitskiy et al., 2021; Touvron et al., 2021) to provide
detailed experimental settings.

LwPF for vision transformers. Table 5 shows the architecture parameters for the three vision transformers, ViT-Ti,
ViT-S, and ViT-B. All of them are trained with a patch size of 16 × 16 and a resolution of 224 × 224. Note that each
transformer-encoder layer has an attention module. LwPF is applied to all attention modules.

We used PyTorch Image Models timm3. The ViT-Ti, ViT-S, and ViT-B architectures are specified with the options
deit_tiny_patch16_244, deit_small_patch16_244, and deit_base_patch16_244, respectively.

2https://github.com/ml-jku/DeepRC
3https://github.com/rwightman/pytorch-image-models
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Table 5: Architecture of vision transformers

Model Embedding dim. # heads Dim. per head # layers # params

ViT-Ti 192 3 64 12 5.7M
ViT-S 384 6 64 12 22.1M
ViT-B 768 12 64 12 86.6M

Hyperparameter settings. Finally, we report the results of studies on LwPF hyperparameters. Note that all training
hyperparameters are fixed to ones, as recommended in (Touvron et al., 2021), which are for training vanilla ViTs, as
described in Sec. 4.3. We did not adjust the training hyperparameters to LwPF to solely evaluate whether LwPF improves
generalization ability. Note that tuning the training hyperparameters with LwPF may further improve performance.

The early stopping results are reported in Tables 6 and 7. In Table 6, LwPF with ReLU and PFU outperform the baseline at
epoch 250 for all the ViTs. This suggests that the partial forgetting function should be scheduled. We used a fixed definition
of D during training in this work. Extending D to Dt, where t is the number of iterations or epochs, to dynamically control
the strength of forgetting in training would be interesting in future work.

Table 6: Results at epochs 250, 500, and 1000 for CIFAR-10. Evaluation accuracy (Acc.; %) and training loss (Loss) are
reported. Underline values indicate better performance than the baseline

Method Epoch ViT-Ti ViT-S ViT-B

Acc. Loss Acc. Loss Acc. Loss

Baseline 250 63.58 1.951 71.56 1.879 73.93 1.849
500 73.80 1.747 81.47 1.787 82.58 1.717

1,000 85.36 1.680 88.71 1.574 89.40 1.579

LwPF (ReLU) 250 64.66 1.920 71.73 1.865 74.72 1.826
500 74.66 1.832 80.83 1.777 84.56 1.694

1,000 84.30 1.693 87.70 1.646 90.39 1.567

LwPF (PFU) 250 64.70 1.922 71.65 1.856 74.71 1.813
500 74.58 1.835 80.99 1.776 84.30 1.694

1,000 84.26 1.692 87.61 1.647 90.17 1.568

Table 7: Results at epochs 250, 500, and 1000 for CIFAR-100. Evaluation accuracy (Acc.; %) and training loss (Loss) are
reported. Underline values indicate better performance than the baseline

Method Epoch ViT-Ti ViT-S ViT-B

Acc. Loss Acc. Loss Acc. Loss

Baseline 250 41.35 3.883 49.65 3.578 55.72 3.537
500 53.88 3.571 59.12 3.300 61.93 3.151

1,000 61.93 3.243 64.17 2.936 65.45 2.764

LwPF (ReLU) 250 39.04 3.898 49.52 3.614 54.77 3.549
500 51.00 3.614 59.08 3.388 60.70 3.062

1,000 61.01 3.242 62.13 2.882 65.39 2.673

LwPF (PFU) 250 39.04 3.898 49.44 3.612 54.75 3.550
500 51.00 3.614 59.20 3.388 60.71 3.063

1,000 60.84 3.242 61.67 2.859 65.82 2.661
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