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ABSTRACT

Among various supervised deep metric learning methods proxy-
based approaches have achieved high retrieval accuracies. Prox-
ies, which are class-representative points in an embedding space,
receive updates based on proxy-sample similarities in a similar
manner to sample representations. In existing methods, a relatively
small number of samples can produce large gradient magnitudes
(i.e., hard samples), and a relatively large number of samples can pro-
duce small gradient magnitudes (i.e., easy samples); these can play a
major part in updates. Assuming that acquiring too much sensitivity
to such extreme sets of samples would deteriorate the generaliz-
ability of a method, we propose a novel proxy-based method called
Informative Sample-Aware Proxy (Proxy-ISA), which directly mod-
ifies a gradient weighting factor for each sample using a scheduled
threshold function, so that the model is more sensitive to the in-
formative samples. Extensive experiments on the CUB-200-2011,
Cars-196, Stanford Online Products and In-shop Clothes Retrieval
datasets demonstrate the superiority of Proxy-ISA compared with
the state-of-the-art methods.
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Figure 1: Overview of typical proxy-based DML and the pro-
posed approach in this paper. Traditional methods can result
in a few hard samples pulling the proxy, exacerbating the
overlapping problem. The Proxy-ISA proposed in this paper
aims to address this limitation by identifying such samples
and reducing their contribution to the proxy.

1 INTRODUCTION

Learning semantic similarities between a pair of visual data is an
important objective in computer vision tasks. Metric learning aims
to learn an embedding space such that samples from the same
category are close to each other and otherwise far apart. In deep
metric learning (DML), learnable encoders are utilized to produce
representations in an embedding space in which semantic distances
between samples can be measured. DML has broad computer-vision
applications such as image retrieval [30, 32], face recognition [40],
person re-identification [42] and few-shot learning [4, 16, 43].

Throughout the past studies, DML methods can be categorized
into two families: pair-based and proxy-based. Pair-based methods
consider the distance between a pair of data embeddings, while
proxy-based methods consider the distance between a data embed-
ding and a class-representative point in the embedding space.

A typical example of pair-based losses is contrastive loss [6],
which aims to pull close or push apart a pair of data embeddings
according to the identicality of the class labels. Other pair-based
losses, such as triplet loss [13] and N-pair loss [32], extend this idea
to more than two samples. Due to its combinatorial nature, a naive
implementation of a pair-based method suffers from polynomial
growth of complexity with respect to the number of training sam-
ples. Additionally, training with pairs from a subset (mini-batch)
lacks global information of the embedding space. In contrast, proxy-
based methods [8, 26, 29, 36] assign one or more trainable reference
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points called proxies to each class, and reduce the training com-
plexity by considering only the distance from the data embeddings
to proxies. During training, proxies attract data embeddings of the
same class (i.e., positives) and push away those of different classes
(i.e., negatives). Meanwhile, proxies are kept in memory and thus
serve as a source of global information.

In existing methods, a small number of hard samples, such as
positives that are far apart and negatives that are close, produce
large gradients, and thus will have more impact on learning. A large
number of easy samples can also dominate the gradient because of
their large population size. An intuitive strategy is to select only
the hard samples [12], but this has been observed to produce noisy
gradients and converge to bad local optima [41], and its impact on
proxies remains to be discussed. In pair-based methods, mining
strategies, such as semi-hard negative mining [31], have been pro-
posed to select and learn more important negatives that are closer to
the anchor but still farther away than the corresponding positives.
However, the hardness is usually manually defined by a numerical
threshold, is fixed during learning, and is shared among different
classes. As illustrated in Fig. 1, increasing the gradient weights of
hard proxy-data pairs may also disrupt the ideal distribution of the
clusters.

To address the limitations of existing proxy-based methods and
to effectively incorporate the idea of sample importance into proxy-
based DML, we propose the Informative Sample-Aware Proxy (Proxy-
ISA) that directly controls gradient weights non-uniformly accord-
ing to the temporal learning states, which are defined by how the
samples with different hardness distribute in the embedding space.
Our idea is motivated by empirical findings in active learning [5],
where informative samples dynamically change along learning. In
Proxy-ISA, as outlined in Fig. 1, each proxy is assigned a tempo-
ral similarity range, determined by the space already learned (too
easy), informative region, and the space contains outliers (too hard);
weights for positive and negative pairs are assigned separately. We
apply a memory queue to estimate each class hardness. Unlike
memory-based DML [20, 39], where past information is directly
used to update weights, our use of memory allows us to estimate
the space occupied by easy samples around the proxies and to judge
whether the sample of interest is informative.

Our main contributions are summarized as follows:

e We propose a novel method for proxy-based DML, which per-
forms class-dependent dynamic weighting for each sample
based on the learned intra- and inter-class relations.

e We apply the concept of a “volume" of the class-related region
[7] to DML and demonstrate empirically that focusing on
informative samples based on the estimation of the class
hardness improves generalization.

e Proxy-ISA achieves state-of-the-art performance on four
public benchmarks of DML in both standard and Metric
Learning Reality Check (MLRC) [27] evaluation settings.

2 RELATED WORK

Pair Mining / Pair Weighting in DML Non-uniform sampling
[1, 2, 15, 17] and weighting [5, 22, 23] methods have been shown to
improve the performance of deep neural networks and have been
widely applied to various tasks. In pair-based DML, many sampling
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strategies [9, 41] and a general pair weighting (GPW) framework
[37] have been developed.

Hard sample mining is the most widely discussed sampling strat-
egy for pair-based DML. For example, Wu et al.[41] showed that
pair-wise distance distribution in the embedding space is biased,
and proposed distance weighted sampling to sample negative pairs
uniformly according to the pair-wise distance within the mini-batch.
Additionally, the deep sampler network (DSN) [9] was proposed
to learn an adaptive sampling distribution based on the prior rela-
tions between training samples in the feature embedding network.
However, the architecture of DSN relies on the design of the loss
function, and online sampling increases the training cost. Wang
et al.[37] proposed the general pair weighting (GPW) framework,
which casts the sampling problem of deep metric learning into a
unified view of pair weighting through gradient analysis. They
proposed the Multi-Similarity (MS) loss to generate non-uniform
pair weights based on various pair relations.

Since hard mining is easily influenced by outliers that lead the
learned model to a bad local optima [31], methods such as Density
Aware DML [10] and Class-Aware Attention [38] were proposed to
identify outliers and reduce their impact on learning. In Hardness-
Aware DML [44], the hardness threshold was scheduled by a global
loss to perform adaptive mining. Although hardness threshold and
weighting score have been applied in existing methods, the pro-
posed thresholds and weights were not adaptive to class hardness,
which can vary during training. Additionally, these methods provide
pair-wise information by exploiting data-to-data relations within
mini-batches, which results in the deficiency of global information;
thus, the corresponding learning signal is sub-optimal.

Proxy-Based Deep Metric Learning The use of proxy is raised
by Proxy-NCA [26], which combines the NCA loss [11] with a
proxy. In its standard setting, one proxy is assigned to each class,
and the raw data point is encouraged to be close to a positive
proxy and far from all negative proxies. Alternatively, Proxy-Anchor
[18] regards each proxy as an anchor, and intra-class relations are
treated similarly to the MS loss [37]. More recent studies [29, 45]
also consider assigning more proxies to each class to capture intra-
class variance. For example, Qian et al.[29] extended the SoftMax
loss to DML with multiple class centers, and proposed SoftTriple
loss, which reflects the local geometry for each class. ProxyGML
[45] applies the proxy in a graph structure manner, and multiple
proxies are selected to construct a subgraph to help raw data points
learn the neighbor structure. Although memory-based learning [20]
was introduced to proxy-based methods for better generalization,
existing methods do not consider the learning stability of the proxy
itself, and still do not simultaneously address both intra- and inter-
class relations in the loss function.

Rather than regarding the proxies as class representatives or
graph nodes, the proposed Proxy-ISA treats each proxy as the
center of a class-related region (subspace), and the definition of all
the regions are estimated separately according to the proxies. As the
learning difficulty varies from class to class, the definition of regions
also varies even within the same iteration. In the proposed method,
the proxy-data pairs are treated non-uniformly and adaptively based
on the learned intra- and inter-class relations, resulting in better
handling of global information.
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3 PROPOSED APPROACH

In this section, we first revisit the GPW framework [37] to provide
a unified view of DML loss functions, and qualitatively discuss the
impact and problems of hard samples on the learning of the proxies.
We then propose our gradient weighting method for proxy-based
loss by introducing an estimation logic for hardness that adaptively
changes along learning to ameliorate the problems.

3.1 The Gradient Weighting Mechanism

Let x; € RD be a real-value sample vector, and y; € {1,2,...,C} be
the corresponding label. Then the input matrix and the label vector
for m training samples can be denoted as X € R"™P and y € R™,
respectively. Let p, € R be the proxy for class ¢ (c = 1,2,...,C).
We denote a deep neural network by f(-;0) : R® — RY, where
0 denotes the corresponding parameters and d is the embedding
dimension. Then the cosine similarity between a data embedding
vector and a proxy can be defined as S;c := (f(x;; 0), p.), where
(-, -) denotes the dot product. Similarly, the similarity matrix can
be denoted as § € R™*C.

Given a proxy-based loss L(S, y), the derivative w.r.t. @ at the
t-th iteration can be written as

ZZ o.L(S, y) 8Slc
L1138, |, a0 |,

_i Z aSic +Z oL | 3Si. ‘
Li\ L 0Sicl, 90 |, & 3Sicl, o0 |,

:ch i ; in Eq. (1) is regarded as a constant scalar in the gradient w.r.t.

0. Since positive pairs are encouraged to be close and negative pairs

need to be pushed away from each other, we assume S ’ ;2

for negative pairs, and %= 0 for positive pairs. Thus Eq. (1)

pom
can be transformed into a form of weighted sum:

aS
0 Z Z ch Sic Z Wie——7~ . . (2
i=1 \c#y;
where w; ¢ = |% . Eq. (2) suggests that the gradient signal
ic |t

is actually controlled by wi,c, namely, how the similarity metric is
defined in the DML loss function.

3.2 Impact of Gradient Weights on Proxies

Let P € RE%4 be the proxy set. The gradient w.r.t. P can be obtained
by replacing 0 in Eq. (2):

DI pIT=

i=1 \c#y;

aS,;c
Wi
apc t

®)

(9 o oc=y;
Eq. (3) suggests that the learning of a proxy is also affected by w; ¢.
In pair-based methods, the effect of w; ¢ is symmetrical since we
can treat either side of the pair as an anchor. However, in proxy-
based methods, larger gradient weights may result in an undesirable
proxy distribution, which is detrimental to the representation of
global information.
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Figure 2: t-SNE [34] visualization of 512-dimensional embed-
ding space for the Cars-196 dataset. (a) and (b) present the
embedding space learned by Proxy-Anchor and normalized
SoftMax, respectively. The proxies of Proxy-Anchor, plotted
with navy blue stars, form a cluster at an early stage due to
the strong repulsive forces.

The first proxy-based loss combined with gradient weighting
was the Proxy-Anchor loss [18], which is formulated as follows:

. a@(6-Sic)
Lpa = |C+| Z log| 1+ Z e

ceC* i:y;=c (@)
C
1 a(5+Sic)
+ C Z log|1+ Z e e |,
c=1 Ly;#c

where C* = {c|c € y} denotes a set of class labels in a mini-batch,
and a, § are fixed hyper-parameters. By taking the derivative of
Lpa wrt. Sic, the gradient weights are given by
a(6=Sic)
Wic = 1 a:&y(]&si,c) (5)
Oy ey Vite
Jiyj#e
From Eq. (5), it is clear that for a positive pair, w; will be large
if the data embedding is far from its proxy (i.e. S is small), and
will be larger if it is farther than other positive pairs related to the
same proxy (i.e. Sjc < VSj ). A similar approach is adopted for
the negative pairs, as illustrated in Fig. 1, where the thickness of
the arrows indicates the magnitude of the gradient weights. If a
positive pair contains an outlier, the proxy will be pulled heavily in
that direction.
We now analyze the optimization problem according to each
term in the Proxy-Anchor loss.

Proposition 1

log[1+ ) e(975uc) = maxa DT PEG(S = Sie) + HPY),

c

iry;=c iry;=c
log|1+ >\ e*®Sic) | =maxa ' P (0)(Sic+0) +H(P;),
iy;#c Pe Ly#c

(6)

where H(-) denotes entropy for regularization, P} and P_ are the
probability distributions over the positives and negatives related to a
proxy p,, respectively, and PF (i) € {PF|PF(8) + Liy,=c Pe (i) =
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1
1+ Y e*(6=Sie) ’ 1+ Y e%(Sic=(=9)
j:yj=c j:yj¢c
™

HOE P (-6) =

(see appendix for proof).

Proposition 1 suggests that Proxy-Anchor loss actually opti-
mizes two data distributions related to each proxy, and that these
distributions are independent to each other. Thus, the global proxy
distribution is not relevant during training. This is in contrast to
the normalized SoftMax loss, which considers an optimal global
proxy distribution related to each data embedding [29], resulting in
updates of proxies that are completely dominated by data embed-
dings. Since more samples are regarded as hard in the early stages
of learning, the repulsive force generated by negatives cause the
proxies to be far from the ideal distribution, as illustrated in Fig. 2.
Additionally, solutions for the positive terms are sub-optimal when
the positives contain outliers.

3.3 Class Hardness

Following the idea of active learning, we can reduce the weights
of outliers to stabilize the learning of the proxy if most of the data
embeddings are close enough to the proxies (i.e. easy classes). The
problem is then how to obtain a boundary to detect outliers for each
class. We define such an outlier boundary as a class-(proxy-) de-

pendent similarity threshold So(z)tlier’ and define 7¢ to be the range

for informative samples. In other words, we increase the gradient
weights for positive pairs such that S; ¢ € [S () Sy nel

outlier’ ~outlier
and decrease them otherwise, where S(Ez)t Lier H1lc should be another
threshold related to the current learned subspace for class c.

Since we do not have any a priori knowledge about the difficulty
of each class, all samples should be treated equally in the early
stages of training. Such distinctions should be made independently
after the subspace of the class has reached a certain learning stage.

Volume of the learned subspace To simulate the learning of
the subspace, we assume each data embedding owns one volumetric
unit of the subspace belonging to its class, and apply the theory of
effective number (discussed in [7]).

Let y. be the volumetric unit for class ¢, we assume it is affected
by the class hardness and should be larger for a difficult class. A
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sample from a harder class contains more information than that
from an easier class. This is consistent with the fact that most data
embeddings of easier classes are closer to each other than that of
harder classes. According to the original definition in [7], the total
volume of the feature space for each class has an upper bound,
and random sampling can be considered as randomly covering
this volume. This means that overlapping between the samples
randomly happens. Let Vy, be the upper bound of the total volume
and ff = % Then the effective number (denoted as Ej,) is defined
as

1-p"
Eye= ——% 5o ()
where
. 1
nh_)rréo E,(lc) =13 B =V )

holds. Egs. (8) and (9) suggest that E, is independent from the
class hardness. Therefore, in the proposed approach, we regard
the effective number as training progress bar and introduce an
effective number for each class. The upper bound V is set as a hyper-
parameter. Furthermore, we treat the boundary of the feature space
+11¢ as the threshold of
()

the learned subspace related to class c, denoted as S, ..
ne decreases as the learning progresses, as shown in Fig. 3.

as the outlier boundary, and define S () .
outlier

Hence,

Estimating the Class Hardness Based on the above definition,
for a proxy-based method, the average cosine similarity of the
learned positive proxy-data pairs (excluding the outliers) reflects
how well the model learned about a class, and can be used to
estimate the class hardness after a certain stage.

Estimating the class hardness using only the current mini-batch
may not be enough, since there are usually only a few samples from
the same class in the mini-batch, and the number of samples for
some classes may be zero. Therefore, we apply a memory queue to
store the clean data embeddings which were sampled during the
past few iterations. Formally, let M be the memory queue with max
size T, and T be the total number of embeddings from class ¢ in M.
Then Sl(:ime 4 is calculated by

@) _ (c) _ h )
Slearned =h: S‘"’g - FC Z Sic, (10)
i:(x;,y;) EM,y;=c

where h is the hyper-parameter used to scale the hardness. After
processing a mini-batch, we filter out outliers and enqueue the
rest to M, as illustrated in Fig. 4. The memory queue starts after a
certain number of steps is reached, because the embeddings in the
initial stages are typically scattered and the resulting similarities
are not representative.

3.4 Informative Sample-Aware Proxy

Our proposed Proxy-ISA utilizes the aforementioned properties to
generate dynamic pair-weights. Let w; . be the weighting score for
the pair which consists of a data embedding f(x;; 0) and a proxy
P, This weighting score depends on the semantic state of x; and

learning progress E,(lc). Let (‘)Z . and w; . denote the weighting score
for positive pairs and negative pairs, respectively.
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Figure 4: Training flow of Proxy-ISA. Shapes denote embed-
dings from different classes, whose thresholds are denoted
in different colors. When the size of M reaches T, it dequeues
the old embeddings to keep the memory up-to-date. Embed-
dings from the past few iterations are available for reference
due to the slow drift phenomenon discussed in [39]. The al-
gorithm is described in appendix.

To reduce the harmful factors from extremely hard samples, we
first reform the optimization problems as

max a Z w0} Q¢ (i)(8 = Sic) + HQY)

Q& iry;=c
(11)
max o Z chQ;(i) (Sic+9)+H(Q,)
c iiy;#c

where Q} and Q; have the same form as P} and P, respectively.
According to Proposition 1, the optimal of the formulas in Eq. (11)
are

log|1+ Z e wjera(6-Sic) , log|1+ Z e Wi a(5+Sic) R
iry;=c iry;#c
(12)
respectively. Thus, the objective function of Proxy-ISA can be for-
mulated as

5-Sic)

Lrsa = Z log| 1+ Z Vie'@(8=Sic
ceC* oF ceCt i:y;=c

(13)
1N (6+Sic)
+—=— » log|1+ @ie @(O+Sic) |
Z@; Z ) Z

c=1 i:y;#c

where &7 and @ are the average of all ], and w;, respectively,
for all samples i that belong to class c. The summatlon reflects the
average scores of all classes (the global learning status) that relate
to the positive or negative term.

Adaptive Pair Weighting Scores Since the model has higher
confidence in the intra-class hardness when the learning progresses
to a later stage, the penalty from w; . is greater for a larger E,(,C).

A naive implementation is to set wjc = # for both positive

and negative pairs when penalty is needed. However, this causes
the learning signal to be too weak for positive pairs and thus an

imbalance between the positive and negative terms when E,(,C) is

large, since the penalties for outliers are only made for positive

pairs. To prevent the diminishing of v} , we set a lower bound v(c)

ic’
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for all positive pairs, defined as
1
s —— (1)

1+log(1+E9)

Based on the analysis in Sec. 3.3, we define 7, as follows:
Re = (1+k(1—h-SENWE +2, (15)

where k (> 0) is the sensitivity factor and A € [0, 1] is the margin.
Thus, the searching length 7. is controlled by class hardness, where
a harder class has a wider searching space, and an easier class is
restricted to help stabilize the learning.

Finally, the proposed dynamic weights are defined as follows:

wf, = {1 (+)G(C), h- Séf,)g “Ne < 8ic<h- Szgzc))gs
c

on s otherwise,
16)
1 _ (©) (
oy = {maxugy She < Sy e
’ 1, otherwise,
where (r( 9 isa decay function for w;’ .» defined as
() _
(1 +e D)(vp’ - 1)
oy = —1 T (17)
+e

and 7 (> 0) is a hyper-parameter that controls the timing of de-
cay. Since the embeddings are more likely to change in the early
stages and gradually stabilize later, the dynamic weights need
to be controlled such that they change less in the early stages

(see appendix for derivation of oy, )) Using Eq. (9) and Eq. (14),
(c) (e) _ 1

llmn*)oo On = hmn%oo Vn = m.

(c)

This ensures that a)i B

does not fall below v, as shown in Fig. 5.

4 EXPERIMENTS

We conduct experiments on four widely used benchmarks to evalu-
ate and analyze the effectiveness of Proxy-ISA.

4.1 Experimental Setting

Datasets Experiments were conducted on the CUB-200-2011 [35],
Cars-196 [21], Stanford Online Products (SOP) [33], and In-Shop
Clothes Retrieval (In-Shop) [24] datasets. We follow the standard
protocol applied in [33] to split them into training and testing parts.
CUB-200-2011 contains 200 species of birds with 11,788 images;
we used the first 100 classes (5,864 images) for training and the
rest for testing. Cars-196 consists of 196 model categories of cars
with 16,185 images; the first 98 classes (8,054 images) were used
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Figure 6: t-SNE visualization of the 512-dimensional embed-
ding space for the Cars-196 dataset. (a) and (b) present the
changes of the embedding space learned by Proxy-ISA during
training at epoch 30 and 80, respectively, and (c) and (d) show
the results of PA and P-ISA on the test set, respectively.

for training and the rest are used for testing. SOP contains 22,634
classes with 120,053 product images; we used the first 11,318 classes
(59,551 images) for training and the rest for testing. The first 3,997
classes (25,882 images) of In-Shop were used for training, while
the remaining 3,985 classes were used for the test set, which was
partitioned into a query set and a gallery set containing 14,218 and
12,612 images, respectively.

Evaluation Metrics The evaluation procedure included two
types of metrics. We first performed a standard evaluation following
[33], calculating the Recall@K for image retrieval tasks. We also
adopted MAP@R, known as Mean Average Precision, from the MLRC
[27] evaluation settings. MAP@R considers the correctness of each
result associated with a single query, and is considered to be more
suitable for evaluating the entire embedding space.

Implementation Details Our method was implemented in Py-
Torch [28] We used the Inception network with batch normalization
[14] as the embedding network, the embedding dimension was set
to 512. All input images were cropped to 224x224, and random
cropping and horizontal flipping were applied for augmentation
during training; only center-cropping was used during testing. The
memory queue was turned on at the second epoch and the filter
was enabled one epoch after that. The hyper-parameters induced
by Proxy-Anchor were set to & = 32, § = 10~} following [18] for all
experiments. Unless otherwise mentioned, we adopted a batch size
of 128, and used the Adam optimizer [19] with a learning rate of
10~* and hyper-parameters V = 100, h = 1.5 x 101, k =9 x 1071,
A =1071, 7 = 1.5 as our default setting,
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Table 1: Comparison of Recall@1 of proxy-based methods
on four famous datasets for the task of image retrieval. ¥
denotes evaluation in a fair setting

Method CUB Cars SOP In-Shop
Proxy-NCA [26] 65.0 832 759 86.9
SoftTriplet [29] 654 845 783 -
Proxy-AnchorJr [18] 66.6 84.0 783 91.3
ProxyGML [45] 66.6 855 78.0

Proxy-ISA (ours) 68.1 86.4 789 923

Table 2: Evaluation in MLRC setting. { denotes evaluation in
a fair setting

CUB-200-2011 Cars-196
R@1 MAP@R R@1 MAP@R

63.6+05 23.1+03|81.2+05 242+0.3
650+04 239+03(83.6+03 254+0.3
67.3+03 26.7+0.2|855+0.2 27.6+0.3
675+03 265+0.2|854+03 27.2+0.3
65.0+03 247+0.1|851+03 281+0.2
MS+Miner [37] 67.7+0.2 252+0.2|83.7+03 27.0+04
SoftTriplet [29] 66.2+04 25.6+0.2|845+03 27.1+0.2
Plroxy—AnchorT [18]]66.3 £0.3 25.7+0.3|83.6+04 27.1+0.3
Proxy-ISA (ours) 68.1+0.3 26.8 +0.2(86.3 £0.2 29.3 +0.2

Method

Margin [41]
Proxy-NCA [26]
CosFace [36]
ArcFace [8]

MS [37]

4.2 Embedding Space Visualization

To outline how Proxy-ISA controls the learning of proxies, we
visualize the embedding space via t-SNE [34]. As illustrated in
Fig. 6a, Proxy-ISA gradually widens the distance between proxies so
that each proxy is distributed in its own subspace, and easier classes
form clusters earlier than harder classes. This demonstrates that the
class hardness differs, and the definition of informative samples for
each class also differs. The relationships of class hardness learned
by Proxy-ISA reserves a wider range for a harder class even if it
is an unseen category, as illustrated in Fig. 6d. This demonstrates
that Proxy-ISA can better utilize the embedding space by learning
dynamic margins according to the class hardness. As a result, the
model trained with Proxy-ISA acquires a more detailed subspace
discriminative capability and thus a better generalization.

4.3 Comparison with State-of-the-Art

We now compare Proxy-ISA with state-of-the-art DML methods
by performing image retrieval tasks. The learning rates were set
to 6 x 107 for SOP and In-Shop. We only adopted the warm-up
epoch and the AdamW optimizer [25] in the exceptional settings!
introduced by [18] for these two datasets. For a fair comparison,
all such settings were also removed for Proxy-Anchor in experi-
ments on CUB-200-2011 and Cars-196. As shown in Table 1, the
proposed Proxy-ISA achieves the best performance compared with
the existing proxy-based methods.

1See appendix for details.
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The evaluation results in the MLRC setting are presented in Ta-
ble 2. As the MAP@R metric evaluates the whole embedding space,
the results on the two widely used datasets demonstrate the effec-
tiveness of Proxy-ISA in improving the quality of the embedding
space.

5 CONCLUSION

Treating the proxy-data pairs equally to data pairs can cause unde-
sirable proxy distribution in the embedding space. To address this
problem, we proposed the Informative Sample-Aware Proxy (Proxy-
ISA), which controls gradient weights non-uniformly according
to different semantic states. Based on the adaptive semantic states
for different classes, Proxy-ISA helps each proxy discover the most
informative data by exploiting learned information. Furthermore,
we showed that the definition of “informative" is class hardness
dependent by applying the concept of “volume” of the learned sub-
space to DML. The empirical results demonstrate the superiority of
Proxy-ISA over state-of-the-arts.
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We describe the training flow of our proposed method in Algo-
rithm 1.

Training Complexity Although our proposed Proxy-ISA takes
complexity of O(NC), it will increase the training time to some
extent on large datasets that contain a larger number of categories
(i.e., C > N), since each dynamic weight is treated independently
and calculation of each 7. takes extra complexity.
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Algorithm 1 A training iteration of Proxy-ISA

Input: data embeddings X, class label y, proxy set P, memory
queue M.
S « cosine similarity between P and X
C* « class labels appeared in y
filter — 0
N1, N2, ..., c < calculate search length for each class
forc e C" do
fori:y; =cdo
if filter is turned on then
Calculate w;f . according to S; ¢

Add x; to filter if Sic < S\~ e
else
ch —1
end if
end for
end for
forc=1,2,...,Cdo
fori:y; # cdo
Calculate wj, according to Sjc
end for
end for
Calculate loss
if M is turned on then
Enqueue x; € {X — filter} to M
Dequeue old embeddings if M out of size
forc e C* do
Update Sl(eca)rned
end for
end if

through M

B PROOF OF PROPOSITION 1
Proof. According to the KX.T. conditions [3], £} in Eq. (6) has the
closed-form solution

. @ (6-Sic)
P = sy SRl (18)

Jiyj=c

Therefore, we have

a D PEDE-Sie)+H(PE) =log|1+ Y. 7075 | (19)

i:y;=c i:y;=c

The same analysis is applicable to P .

C DETAILS OF THE DECAY FUNCTION

Since the penalty from o], is decided by the estimated class hard-
ness, it should not be too large when the model cannot determine
the class hardness. In other words, all a) . should be close to 1, with
less variation in the early learning phase leen an original sigmoid

function that varies with E,(,

— (20)
1+ e‘EilL)
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Figure 7: Impact of compactness of the embedding space on
the repulsive force. A compact space (or clusters of the harder
classes) generates greater joint repulsive force, even if the
cosine similarity to the proxy (i.e. the gradient weight of the
proxy-data pairs) is kept unchanged.

we then adjust it to our desired curve. Firstly, to satisfy lim, o+ cr,gc) ~

1, we transform the function to

1
e (21)
14 e (B 0)r

where we introduce 7 to control the timing of decay. Secondly,
(c) (c)

to satisfy limp—e0 0 ° = vy
unknown variable ¢ as follows:

, we formulate an equation with

S (5 I S
nlgrgoon =1 1o = 'n - (22)
The solution is
E=(1+e ) (1-v\), (23)
thus, the decay function is formulated as:
T (C)
o@ _qy 1) )4 (24)
n (c) _
1+eV-En

The penalty from w;, is set to 1/ E,(f) (< v,(f)) for preventing the

repulsive force on the proxy from being too large under the impact
of a large population of easy negatives.

D IMPACT OF PROXY-ISA ON THE
EMBEDDING SPACE

To quantitatively describe the learned embedding space, we show
its compactness via heat map of pair-wise cosine similarity. As illus-
trated in Fig. 8, the distribution of the data embeddings is relatively
compact at the initial stage (results of the pre-trained backbone and
arandomly initialized embedding layer), and is dispersed to varying
degrees after applying different objective functions. Fig. 8e, Fig. 8h
and Fig. 8k show that the embedding space learned by Proxy-Anchor
loss [18] stops dispersing after it reaches a certain stage, compared
to the case of normalized SoftMax loss in Fig. 8d, Fig. 8g and Fig. 8j.
This is resulted from the key difference between Proxy-Anchor and
normalized SoftMax, the consideration of the optimization problem
(i.e., Proxy-Anchor only considers the optimal distribution of data
embeddings related to each proxy, while normalized SoftMax only
considers the optimal distribution of proxies related to each data
embedding), since Proxy-Anchor generates stronger attractive and
repulsive force between a proxy and a relatively hard sample, the
proxy distribution is easily disrupted.
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Figure 8: Heat map of cosine similarity between data embeddings of training set of the Cars-196 dataset and proxies. Three
data samples are randomly selected for each class.
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Figure 9: Impact of the hyper-parameters k and A on the
MAP @R metric.

Since most of the data embeddings are scattered in a relatively
compact space at the initial stage, a larger fraction of this is regarded
as hard samples (mostly negative) by Proxy-Anchor, which means
the proxies are more likely to move in undesired directions, thus
forming a cluster far from the data embeddings, as shown in the
paper. After the proxies reach a balance (i.e., learned a shortcut by
discriminating the data embeddings while getting far from them),
they still keep the ability to force the positives to be close to each
other and to be far from the negatives, but failed to disperse the
whole embedding space further. In the meanwhile, a too compact
embedding space generates stronger repulsive force, which blocks
the proxy from getting closer to its ideal cluster, as described in
Fig. 7.

Unlike Proxy-Anchor, our proposed Proxy-ISA captures infor-
mative samples that correspond to different learning stages, thus
continues to disperse the embedding space, even in the late learning
phase, as shown in Fig. 8i and Fig. 81. Although the dispersion is not
as great as normalized SoftMax, Proxy-ISA allows the model to con-
sider relative sample hardness for each class, which is ignored by
normalized SoftMax (also ignored by other SoftMax based methods
[8, 36] and Proxy-NCA [26]). In other words, Proxy-ISA considers
both sample-wise hardness and class-wise hardness, this helps the
proxy discover its own informative samples adaptively according
to different classes, and thus generates better learning signals for
the model.

E ABLATION STUDY
E.1 Impact of Hyper-parameters

The most important hyper-parameters are k and A, which control
the search length (1¢) of the informative samples, and k also controls
the sensitivity to class hardness. As illustrated in Fig. 9, for Cars-196
[21] dataset, when k reaches an appropriate range, the adaptive
search length helps each proxy focus on its informative samples,
and thus improves the model performance for a wider range of the
margin A. In the meanwhile, a search length with too large a k, i.e.,
too sensitive to the class hardness, will be more likely to introduce
outliers for harder classes, thus can degrade the generalization.
This is consistent with that hard samples do not always mean
informative. For different datasets, the appropriate k should be
different because the inter-class relation differs.

Li, et al.
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Figure 10: Impact of the hyper-parameters V (upper bound
of E,) and T (maximum size of the memory queue) on the
Recall@1 metric.

Table 3: Comparison of different combination of penalty
from w; . on Cars-196 dataset

() (o) (¢)

Wl 1 (no penalty) 1 (no penalty) 1/E,” v, Op

;. 1 (no penalty) 1/E,<,C) l/Eﬁlc) 1/E,(,C) l/E,(lC)
Recall@1 83.6 85.1 714 858 86.3
MAP@R 27.1 283 163 287 293

We show the impact of V and T on the test set of CUB-200-2011
[35] (100 classes). As illustrated in Fig. 10a, too large V will degrade
the model performance, since total volume of the finite samples
in the feature space of one class has an appropriate limit, which
should not be set too large. In the meanwhile, V' controls the decay
of the dynamic weights, which needs to be at an appropriate timing
to help the model focus on the informative samples.

The memory size T affects the estimation quality of Sl(c) ,
earned

which is the threshold of a learned subspace. Too small T will result
in an insufficient number of samples used for estimation, while too
large T will result in some of the samples in M being outdated, thus

the memory size has a best range, as shown in Fig. 10b.

E.2 Effect of the Decay Function

To show the effect of the decay function cr,(lc), we compare the

. . . + .
performance by setting different penalties of w; .. As shown in

Table 3, setting w}, = 1/ E,(IC) , which is the same to w; , will degrade

ic’
the performance since the imbalanced weighting between positives

(c)

and negatives, as discussed in the paper, bounding it with v,

alleviates this problem. After applied the decay function a,(lc) for
a)z .» our method provides weighting factors dynamically along
learning, and the penalty increases significantly only when the
learning of the class reached an appropriate phase, this also helps
the model treat informative samples non-uniformly along learning.

In the meanwhile, it prevents the gradient from being dominated
by a relatively large number of easy proxy-data pairs by directly
reducing their gradient weights, which also keeps the class-related
regions from being over-compressed, thus prevents over-fitting,
as shown in Fig. 11a. A similar effect can be observed when we
apply the adaptive weighting scores directly on Proxy-NCA [26]
(Fig. 11D).
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Figure 11: Performance on unseen classes of Cars-196. Al-
though the baselines converge faster, over-fitting happens as
learning progresses.
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Table 4: Recall@1 compared to Proxy-Anchor with excep-
tional settings applied

Method CUB Cars SOP In-Shop

Proxy-Anchor [18] 684 86.1 79.1 915
Proxy-ISA 69.4 86.8 79.3 92.5

E.3 Extra Settings for Fair Comparison

As mentioned in other work [20, 45], Proxy-Anchor loss is actu-
ally implemented with three additional tricks: 1) the AdamW [25]
optimizer instead of Adam [19], 2) a parameter warm-up strategy
for the last FC layer, 3) a combination of average and max pooling
following the backbone network. Comparison to Proxy-Anchor
with all the exceptional settings enabled is shown in Table 4.
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