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Abstract
This study addresses an issue of co-adaptation
between a feature extractor and a classifier in
a neural network. A naı̈ve joint optimization
of a feature extractor and a classifier often
brings situations in which an excessively com-
plex feature distribution adapted to a very spe-
cific classifier degrades the test performance.
We introduce a method called Feature-extractor
Optimization through Classifier Anonymization
(FOCA), which is designed to avoid an explicit
co-adaptation between a feature extractor and
a particular classifier by using many randomly-
generated, weak classifiers during optimization.
We put forth a mathematical proposition that
states the FOCA features form a point-like distri-
bution within the same class in a class-separable
fashion under special conditions. Real-data ex-
periments under more general conditions provide
supportive evidences.

1. Introduction
When specific signal patterns are repeatedly delivered by
hidden neurons in a neural network during training, the
network parameters are updated in a strongly tied way, or
co-adapted, so that the network becomes vulnerable against
small input perturbations (Hinton et al., 2012; Srivastava et al.,
2014). To discourage co-adaptation, Hinton et al. proposed
a method called Dropout that randomly deactivates neurons
during training. Properties of Dropout training have been
intensively studied (Helmbold & Long, 2015; Baldi & Sadowski,
2013; Gal & Ghahramani, 2016; Wager et al., 2013; Ren et al.,
2016; Warde-Farley et al., 2013; Bengio et al., 2013); whereas
there is a critique saying it does not necessarily yield co-
adaptation prevention ability (Helmbold & Long, 2018).

Yosinski et al. studied the degrees of inter-layer co-
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(a) Joint opt. Single- (left) and multi-layered classifiers (right).
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(b) FOCA. Single- (left) and multi-layered classifiers (right).

Figure 1. Visualization of typical 2D features of two-class training
data. (a) A naı̈ve joint optimization of a feature extractor and a
classifier; (b) FOCA (ours). Features in (b) form nearly point-like
distributions per class, whereas those in (a) form more complex
distributions. An L2 loss is minimized in each case. Black (white)
dots indicate +(−)1-class data points, and the colored maps in-
dicate the classifiers’ outputs, where in (b) “averaged” outputs of
256 weak classifiers are shown.

adaptation by examining test performance that mid-layer
features can yield (Yosinski et al., 2014). In part of their ex-
periments, they split an end-to-end trained network into two
blocks of layers, initialized the second-block parameters
with random numbers, and trained the second block from
scratch with the first-block parameters held fixed. They
found that there are often cases where the secondary op-
timization degrades the test performance compared to the
preceding primary joint optimization, despite that Dropout
is adopted. In these cases, inter-layer co-adaptation (or
fragile co-adaptation, in their words) happens between two
blocks. Potentially, there is a chance that the secondary op-
timization finds the same minimum achieved by the primary
optimization; however, in reality the chance rate is usually
not high. Excessively complex feature distribution, like the
ones shown in Fig. 1 (a), would be a major factor that in-
duces inter-layer co-adaptation. Yosinski et al. also showed
that inter-layer co-adaptation tends to cause negative effects
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in the cross-domain transfer.

Is there a way to fundamentally avoid inter-layer co-
adaptation? Based on a thought that naı̈ve joint optimiza-
tion of a feature extractor and a classifier would result in
unwanted co-adaptation between them, we seek a more
fundamental approach to break the adhesion, rather than
searching best-performing feature layers empirically (Yosin-
ski et al., 2014; Kobayashi, 2017). The questions we try to
answer in this work are: a) Is it possible to train a feature
extractor without inter-layer co-adaptation to a particular
classifier? b) After such training, what kind of character-
istics along with robustness against unwanted inter-layer
co-adaptation does the feature extractor acquire?

Regarding the first problem, we introduce a particu-
lar feature-extractor optimization method called Feature-
extractor Optimization through Classifier Anonymization
(FOCA) in Section 2. FOCA is designed so that the feature
extractor does not explicitly co-adapt to a particular classi-
fier. Instead, it uses randomly generated, weak classifiers
during the feature-extractor training. FOCA belongs to a
family of network randomization methods (Srivastava et al.,
2014; Wan et al., 2013; Zeiler & Fergus, 2013; Huang et al., 2016;
Singh et al., 2016), but is different from others in terms that
FOCA does not employ a joint optimization of a feature
extractor and a classifier. The classifier part is anonymized
by marginalizing independently generated, weak classifiers;
in this way explicit co-adaptation to a particular classifier is
avoided.

Regarding the second problem, we obtained intriguing math-
ematical proposition (Section 3) and experimental evidences
about simplicity of FOCA feature distributions. Let us
suppose class-c features form a point-like distribution in a
class-separable fashion. In that case a strong classifier for a
partial dataset must be also strong for the entire dataset. This
characteristics is largely confirmed for the FOCA features
(Section 4.1). The distance between large-dataset solution
and small-dataset solution in the classifier parameter space
is indeed very small when FOCA is adopted (Section 4.2).
Low-dimensional analyses of the FOCA features exhibit
nearly point-like distributions (Section 4.3).

2. Optimization Method to Break Inter-Layer
Co-Adaptation

In this section, we introduce FOCA that aims at training
a feature extractor without inter-layer co-adaptation to a
particular classifier. We first go over the basic joint opti-
mization method, then introduce FOCA.

2.1. Joint Optimization: a Review

Let (x, t) be a pair of a dI -dimensional input data and the
corresponding dO-dimensional target data, respectively. The

training dataset D contains nD such pairs. Feature extractor
Fφ : RdI → RdF transforms an input to a dF -dimensional
feature with parameter set φ, and classifier Cθ : RdF →
RdO transforms a feature to a dO-dimensional output vector
with parameter set θ. A joint optimization problem is given
as

(φ?, θ?) = arg min
φ,θ

1

nD

∑
(x,t)∈D

L (Cθ(Fφ(x)), t) , (1)

where L(·, t) : RdO → R defines the sample-wise loss
between the network output and the target.

When SGD training is naı̈vely applied, at each step the clas-
sifier is updated so as to become more discriminative for the
presented features, no matter how complex the feature distri-
bution is. The feature extractor, on the other hand, is updated
so that the classifier at that moment becomes stronger, no
matter how complex the decision boundary is. The toy ex-
ample in Fig. 1 (a) demonstrates such a case, where training
results in excessively complex feature distribution.

2.2. Feature-extractor Optimization through Classifier
Anonymization (FOCA)

Below, we introduce FOCA for optimizing a feature extrac-
tor without explicitly co-adapting to a particular classifier.
The optimization problem is defined as

φ? = arg min
φ

1

nD

∑
(x,t)∈D

Eθ∼ΘφL (Cθ(Fφ(x)), t) , (2)

where Θφ represents a predefined distribution function of
weak classifiers for a given parameter set φ, and Eθ∼Θφ

represents the expectation value over θ ∼ Θφ. The feature
extractor is optimized with respect to a set of weak classi-
fiers that are independently sampled from Θφ and thus is
not able to co-adapt to a particular classifier, as long as Θφ

generates distinct weak classifiers.

The weakness of the discriminative power of θ ∼ Θφ is
essential in this formulation. If θ ∼ Θφ is designed to be
too strong forD, its decision boundary likely becomes fairly
complex during the training, and the feature extractor would
update itself to better fit the complex decision boundary,
resulting in a vicious cycle. On the other hand, if θ ∼ Θφ

is too weak or even adversarial, the optimization process
would not converge.

The marginalization over weak classifiers likely prevents
the feature distribution from becoming excessively complex.
Even at the end of the optimization, there is generally a
large number of distinct weak classifiers, and the feature
extractor is optimized with respect to the ensemble of these
weak classifiers. Although some of the weak classifiers may
have excessively complex decision boundaries, marginal-
ization over the classifier ensemble likely smoothens those



Breaking Inter-Layer Co-Adaptation by Classifier Anonymization

out. This likely yields a relatively simple decision boundary
and reasonably strong classification power, as is essential in
the classical Classifier Bagging algorithms (Breiman, 1996)
and other ensemble learning algorithms (Hara et al., 2017;
Zahavy et al., 2018). Therefore, the form of the feature distri-
bution likely becomes simple as far as the feature-extractor’s
description ability allows.

There is some room in defining Θφ, and here we introduce
a particular definition. Let

Θφ = U({θφ,b; b = b1, b2, · · · }), (3)

where U(s) is a discrete uniform distribution function for
all elements in set s, and θφ,b is a solution that minimizes a
batch-wise loss function with a norm regularization,

θφ,b = arg min
θ

1

nb

∑
(x,t)∈b

L (Cθ(Fφ(x)), t) +λ‖θ‖22. (4)

Here, batch b comprises nb training samples that cover all
classes, and λ > 0. We further assume that the classifier
parameters are initialized with random numbers prior to
optimizing; therefore, there is almost no chance of having
continuity between θφ,b and θφ+δφ,b for ‖δφ‖ � 1.

A solution θφ,b, a strong classifier for the batch b, is not
generally strong for the entire dataset D for given φ because
it does not “see” training samples other than the ones in b.
However, there is no guarantee that θφ,b is always a weak
classifier to D in a classical sense; that is, a weak classifier
performs only slightly better than random guesses. Indeed,
θφ,b can even work adversarially to D, meaning its accuracy
is below the chance rate. But, for brevity, we simply call
θφ,b a “weak classifier” in this work.

The norm regularization term in Eq. (4) helps to avoid
blowups during the feature-extractor training. The scale
of θφ,b can be very large without the regularizer when two
feature vectors in b stand close to each other. In such a case
instability likely occurs.

After a feature extractor is obtained by Eq. (2), the following
secondary optimization using the entire dataset provides a
final, single classifier.

θ? = arg min
θ

1

nD

∑
(x,t)∈D

L (Cθ(Fφ?(x)), t) . (5)

Here, the classifier is trained with fixed features. Note that
the classifier architecture in this secondary optimization can
differ from the one used in the primary optimization.

Our method and meta-learning (Finn et al., 2017) share a
following similarity, despite that the goals are different (co-
adaptation prevention vs. transferable multi-task learing).
Our feature extractor acts like task-generic base network,
and our classifiers act like taskwise fine-tuned models.

Approximate minimization. Regarding the number of
weak classifiers used in a single update of φ, it is impossible
to prepare a complete set of possible weak classifiers due to
the huge number of distinct batches of the same size. We
must adopt approximation instead. Algorithm 1 1 gives an
approximate solution of φ? in two senses: 1) a single weak
classifier is sampled from Θφ per φ-update instead of taking
a marginalization over Θφ, and 2) Θφ is held fixed in the
computation of gradients with respect to φ.

Algorithm 1 Approximate minimization in Eq. (2)
Input: total number of iterations T ; number of classes C; number

of class-c samples nc(c = 1, · · · , C); number of samples per
class for θ-update k; total number of samples nD; minibatch
size for φ-update m; learning rate η

1: Begin
2: Initialize φ by random variables.
3: for t = 1 : T do
4: Ic = [randi(n1, k), · · · , randi(nC , k)]
5: θ = arg min

θ′

∑
i∈Ic L (Cθ′(Fφ(xi)), ti) + λ‖θ′‖22

6: If = randi(nD,m)
7: φ← φ− η

m

∑
i∈If

∂L (Cθ(Fφ(xi)), ti) /∂φ

8: end for
9: End

Output: feature-extractor parameters φ? = φ

It is worth mentioning that there is another way of gener-
ating a reasonably weak classifier: to take a batch (which
can be large) and then to optimize the batch-wise loss in
an incomplete fashion by stopping after a relatively small
number of iterations, say 20 times. This works fine, though
the definition of θφ,b becomes mathematically less clear.

3. Mathematical Property
We now show a proposition about the simplicity of FOCA
feature distributions. It will be proven that under some
special conditions any two samples have exactly the same
features when target classes are the same, but have differ-
ent features when target classes are different. Let us first
introduce a lemma about implicit optimality for individual
features, and then put forth the proposition.

Lemma 3.1. Suppose that a multi-layered feature extractor
with two restrictions is used:

1) The activation function a satisfies

a : R→ R+,
∂a(z)

∂z
6= 0. (6)

2) The last layer is fully-connected.

If φ? simultaneously minimizes sample-wise losses

1In the pseudocode, randi(i, j) returns a j-dimensional vector
with each element being a random variable ∼ U({1, 2, · · · , i}).
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L(Cθ(Fφ(x)), t) for all (x, t) ∈ D, then,

∂Cθ
∂Fφ?

∂L(Cθ(Fφ?(x)), t)

∂Cθ
= 0, ∀(x, t) ∈ D. (7)

( ∂Cθ∂Fφ?
is a short-hand notation for ∂Cθ(f)

∂f

∣∣∣
f=Fφ∗ (x)

. A

summation symbol over Cθ indices is ignored in Eq. (7).)

Proof. Let φ` be the parameter set of the last weight layer
in the feature extractor, and let x` be its input. Then, the i-th
element of the feature layer, which is fully-connected from
the previous layer, is given as Fφ(i) = a(

∑
j φ`(i, j)x`(j)).

Let z =
∑
j φ`(i, j)x`(j). Then, ∂Fφ(i)

∂φ`(i,j)
= ∂a(z)

∂z x`(j) 6=
0, since ∂a(z)

∂z 6= 0 and x` > 0. The inequality ∂Fφ(i)
∂φ`(i,j)

6= 0,

the supposition ∂L
∂φ`(i,j)

∣∣∣
φ=φ?

= 0,∀(x, t) ∈ D, and the

chain rule immediately leads Eq. (7).

In the following discussion, we assume the conditions stated
below hold.

(C1) A multi-layered feature extractor with two restriction
is used: 1) The activation function satisfies Eq. (6); 2) The
last layer is fully-connected.

(C2) The target values are t ∈ {t1, t2} for all samples.

(C3) A sample-wise loss function of the form L̃φ,θ(x, t) =
(Cθ(Fφ(x))− t)2 is adopted.

(C4) A linear classifierCθ(Fφ(x)) = θ̄>Fφ(x)+θ0 is used.

(C5) Θφ = U({θφ,b; b = b1, b2, · · · }), where θb =

arg min
θ

∑
(x,t)∈b L̃φ,θ(x, t) + 1

2λ‖θ̄‖
2
2, and b1, b2, · · · are

distinct batches, each of which comprises one sample from
t1 class and one sample from t2 class.

Proposition 3.2. Suppose that φ? simultaneously min-
imizes the classifier-anonymized, sample-wise losses
Eθ∼ΘφL̃φ,θ(x, t) in a class-separable fashion for all
(x, t) ∈ D. Then, samples from the same class share
the same features; i.e., Fφ?(x) = Fφ?(x′),∀x, x′ ∈ Xc,
but samples from different classes do not; i.e., Fφ?(x) 6=
Fφ?(x′), ∀x ∈ Xc, ∀x′ ∈ Xc′ 6=c.

Proof. Lemma 3.1 about the implicit optimality of individ-
ual features with respect to sample-wise losses yields,

Eθ
∂Cθ
∂Fφ?

∂L̃φ?,θ(x, t)

∂Cθ
= 0, ∀(x, t) ∈ D, (8)

where Eθ is a short-hand notation for Eθ∼Θφ . By taking the
partial derivatives in Eq. (8), one obtains,(

Eθ θ̄θ̄>
)
Fφ?(x) = Eθ θ̄(t− θ0), ∀(x, t) ∈ D. (9)

The singular-value decomposition of the matrix consist-
ing of column vectors θ̄b sampled from Θφ? yields[
θ̄b1 , θ̄b2 , · · ·

]
= USV >, where diagonal elements of

the positive diagonal matrix S consists of the singular
values aligned in decreasing order. Then, U>θ̄b =
[θ̄n>b , 0, · · · , 0]>, where θ̄nb is the non-singular components
of θ̄b. Taking the non-singular part in Eq. (9),(

Eθ θ̄nθ̄n>
)
Fnφ?(x) = Eθ θ̄n(t− θ0), ∀(x, t) ∈ D. (10)

Here, U>Fφ?(x) =
[
Fn>φ? (x), F s>φ? (x)

]>
, where Fnφ?(x)

is the corresponding non-singular part, meaning Fnφ?(x) and
θ̄n sharing the same dimension. The matrix Eθ θ̄nθ̄n> is
obviously invertible; therefore, Eq. (10) can be solved for
Fnφ?(x). It then tells us that (a): Fnφ?(x) depends only on t
and θb’s. On the other hand, the minimum-norm solution θ̄b
satisfies,

[(f1 − f2)(f1 − f2)> + λI]θ̄b = (t1 − t2)(f1 − f2), (11)

where I is the identity matrix and f1(2) = Fφ? with the
target t = t1(t2) as a short-hand notation. Taking the non-
singular part in Eq. (11), the minimum-norm solution θ̄nb
satisfies (b):

[(fn1 −fn2 )(fn1 −fn2 )>+λI]θ̄nb = (t1−t2)(fn1 −fn2 ), (12)

where superscript n denotes the non-singular part. Given
the definition that [θ̄nb1 , θ̄

n
b2
, · · · ] is full-rank, statements (a)

and (b) do not contradict only if

∃v ∈ R, θ̄nb = v, ∀b. (13)

It is, θ̄nb is one-dimensional and constant for all b. Then,
statement (a) yields, Fnφ?(x) = Fnφ?(x′),∀x, x′ ∈ Xc.
Note that Fnφ?(x) 6= Fnφ?(x′),∀x ∈ Xc,∀x′ ∈ Xc′ 6=c;
otherwise φ? is not a class-separable solution. Because
θ0
b = 1/2

∑
(x,t)∈b(t− θ̄n>Fnφ?), θ0

b must be the same for
all b. Since θ̄b = U [θ̄n>b , 0, · · · , 0]>, θ̄b must be the same
for all b also. The fact that the minimum-norm solutions
are the same for all combinations of t = t1 and t = t2
data points tells that Fφ?(x) = Fφ?(x′),∀x, x′ ∈ Xc and
Fφ?(x) 6= Fφ?(x′),∀x ∈ Xc,∀x′ ∈ Xc′ 6=c.

According to this proposition, if the feature extractor has an
enough representation ability under certain conditions, all
the input data of class c are projected to a single point in
the feature space in a class-separable way. The left side of
Fig. 1 (b) visualizes 2D features of the toy data optimized
by FOCA under the conditions (C1)-(C5)2. Features of the
same class are confined in a vicinity, the size of which is
much smaller than the distance between the class centroids.
It is intriguing to observe such a “point-like” distribution

2Here θφ,b is the analytical solution.
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property, even though we do not explicitly impose a thing
like maximization of the between-class scatter with respect
to the sum of within-class scatters. Although we have not
succeeded in proving for multi-layered classifier cases, the
toy experiment still exhibits the point-like distribution prop-
erty as well; see the right side of Fig. 1 (b).

4. Experiment
Let us first state our motivations for a series of experiments.
We saw in Section 3 that the FOCA features obey a point-
like distribution per class under the special conditions. The
question we try to answer in this section is, Do the FOCA
features form a point-like distribution or some similar dis-
tribution under more realistic conditions? Let us suppose
that features form a point-like distribution. Then, following
secondary classifier optimization with the feature extrac-
tor held fixed should yield a similar decision boundary no
matter what subset of the entire dataset it learns, as long as
all classes are covered. We indeed confirmed that high test
performances are achieved by FOCA, even when the sec-
ondary optimization uses smallest possible partial datasets;
namely, only one data from each class (see Section 4.1).
When FOCA is used, the secondary optimization leads the
classifier parameter vector to almost the same point regard-
less of the size of the partial dataset it uses (see Section 4.2).
Lastly, low-dimensional analyses revealed that FOCA fea-
tures projected onto a hypersphere form a nearly a point-like
distribution in a class-separable fashion (see Section 4.3).

Datasets. We use the CIFAR-10 dataset, a 10-class image
classification dataset having 5× 104 training samples, and
the CIFAR-100 dataset, a 100-class image classification
dataset having the same number of samples (Krizhevsky &
Hinton, 2009). Both datasets have similar properties except
for the number of classes (10:100) and the number of sam-
ples per class (5000:500). The idea is to see how these
differences affect feature distribution properties.

Methods. In each experiment, FOCA is compared with
other methods below. Plain: a vanilla mini-batch SGD
training. Noisy (Graves, 2011): the same training rule as in
Plain, except that a zero-mean random Gaussian noise is
added to each of the classifier parameters during training.
Dropout (Hinton et al., 2012): adopted only to the classifier
part. Batch Normalization (Ioffe & Szegedy, 2015): adopted
to the entire architecture.

Dropout is claimed to reduce co-adaptation (Hinton et al.,
2012), though there is a counterpoint to this view (Helmbold
& Long, 2018). FOCA, Dropout and Noisy share the same
characteristics in a sense that the classifier’s descriminative
power is weakened and the classifier ensemble is implic-
itly taken during training. Apart from FOCA, Dropout and
Noisy employ joint optimization, and we are interested to

see how this affects the robustness against inter-layer co-
adaptation. Batch Normalization is included in comparison
based on a thought that the way it propagates signals from
one layer to the other may have some functionality mitigat-
ing inter-layer co-adaptation.

Architecture. The architecture that we use for the primary
optimization in each CIFAR-10 experiment is the one intro-
duced in (Lee et al., 2016), except that we replaced the last
two layers by three fully-connected (FC) layers of the form:
4096(feature dim.)-β-β-10, where β = 1024 for Dropout
and β = 128 otherwise. The architecture for the secondary
optimization is 4096-128-128-10 for all methods. The archi-
tecture for the CIFAR-100 primary optimizations is VGG-16
(Simonyan & Zisserman, 2015), except that the last three FC
layers are replaced by 512(feature dim.)-β-β-100, where
β = 512 for Dropout and β = 128 otherwise. The architec-
ture for the secondary optimization is 512-128-128-100 for
all methods.

Training details. SGD with momentum is used in each
baseline experiment. In each FOCA experiment, the feature-
extractor part uses SGD with momentum, and the classifier
part uses gradient descent with momentum. In each training,
we tested a couple of different initial learning rates and
chose the best-performing one in the validation. A manual
learning rate scheduling is adopted; the learning rate is
dropped by a fixed factor 1-3 times. The weak classifiers
are randomly initialized each time by zero-mean Gaussian
distribution with standard deviation 0.1 for both CIFAR-10
and -100. Cross entropy loss with softmax normalization
and ReLU activation (Nair & Hinton, 2010) are used in every
case. No data augmentation is adopted. The batch size b
used in the weak-classifier training is 100 for the CIFAR-
10 and 1000 for the CIFAR-100 experiments. The number
of updates to generate θ is 32 for the CIFAR-10 and 64
for the CIFAR-100 experiments. Max-norm regularization
(Srivastava et al., 2014) is used for the FOCA training, to
stabilize the training. We found that the FOCA training
can be made even more stable when updating the feature-
extractor parameters u times for a given weak classifier
parameters. We used this trick with u = 8 in the CIFAR-
100 experiments.

4.1. Test Performances of Classifiers Trained on Partial
Datasets

Motivation. We are interested in two aspects. 1) Is the
test performance produced by the primary joint optimiza-
tion reproducible by the secondary classifier optimization?
(FOCA is excluded here because it is not a joint optimiza-
tion method.) 2) How does the test performance degrade
when smaller datasets are learned in the secondary optimiza-
tion? Remember that a point-like distributed features are
expected to demonstrate little degradation.
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Figure 2. Test error rates of classifiers trained on partial datasets.
For each method, partial datasets D′ are constructed r(nD′) times,
where r(5× 104) = 1, r(104) = 5, r(103) = 15, r(102) = 50,
and r(10) = 150. The solid lines indicate the mean values and
the error bars indicate ±1 standard deviations of test error rates.
The numbers in the right side indicate the test error rates (%) of
the end-to-end optimizations and the secondary optimizations for
nD′ = 5× 104 (also shown by the bullet points).

Experimental procedure. We trained feature extractors
on the entire training dataset using FOCA and the other
methods. All methods except for FOCA employ the end-to-
end learning scheme. Then, we detach the feature extrac-
tors and the classifiers after learning. Next, for all meth-
ods, we fix the feature-extractor parameters and train clas-
sifiers from scratch by the orthodox backpropagation on
reduced datasets D′ of size nD′ . For CIFAR-10 experi-
ments, nD′ = 5 × 104, 104, 103, 102, 10 (10 is the small-
est possible dataset size). For CIFAR-100 experiments,
nD′ = 5× 104, 104, 103, 102 (102 is the smallest possible).

Figure 2 now shows the test error rates vs. nD′ .

Cases of nD′ = nD. For all end-to-end optimization meth-
ods tested here, the test performances after the secondary
optimizations at nD′ = 5 × 104 happen to be worse than
corresponding end-to-end optimization results (see the right
side of Fig. 2). This is one of the indications that inter-layer
co-adaptation occurs to some degree in each of these joint
optimization methods.

Cases of nD′ < nD. For CIFAR-10, when nD′ ≤ 103,
FOCA outperforms the other methods. To our surprise, the

average test error rate of FOCA at nD′ = 10 is 14.45%,
which is indeed better than the test error rates of Dropout
(14.95%) at nD′ = 5 × 104 Plain (14.50%) at nD′ = 104,
Noisy (14.75%) at nD′ = 103, and Bach Normalization
(16.93%) at nD′ = 102. For CIFAR-100, FOCA outper-
forms the other methods at any nD′ . The average error
rate of FOCA at nD′ = 102 is 46.03%, which is indeed
better than the test error rate of all the other methods at
nD′ = nD = 5 × 104. We think that a high test per-
formance of FOCA for nD′ � nD is one indication of
relatively simple form of feature distribution.

4.2. Approximate Geodesic Distances between
Solutions

Motivation. We just saw that classifiers trained with the
largest possible dataset (nD′ = nD) and classifiers trained
with the smallest possible partial dataset (nD′ = 10 for
CIFAR-10, nD′ = 100 for CIFAR-100) exhibit similar
test performances when the FOCA features are used. Let
us call the former the large-dataset solution θLD and the
latter the small-dataset solution θSD. The above observation
drove us to investigate distances between θLD and θSD.
The distance should be small when the features form a
point-like distribution per class, and we expect FOCA has
this characteristics. We employ the approximate geodesic
distance here to take changes in the loss landscape into
account. If θLD and θSD are virtually the “same” point with
FOCA, we further expect that the test error rate is almost
unchanged at any intermediate point between θLD and θSD.
Since two neural networks having the same architecture
and different parameters can produce the same output for
an arbitrary input (Watanabe, 2009), we initialized networks
with the same set of random numbers in the experiments
conducted in this subsection.

Experimental procedure. After optimizing a feature ex-
tractor on the full training dataset, θLD is optimized with
features of the full dataset of size nD′ = nD = 5 × 104,
and θSD is optimized with features of a smallest possible
partial dataset; nD′ = 10 for CIFAR-10 and nD′ = 100
for CIFAR-100. To quantify the separation between θLD
and θSD, we partition the straight line connecting θLD and
θSD into P line segments of equal lengths in the parameter
space; i.e.,

θα =
αθSD + (P − α)θLD

P
, α = 0, 1, · · · , P. (14)

We define in this article an approximate geodesic distance
d(θLD, θSD) between θLD and θSD as

d(θLD, θSD) =

[
P−1∑
α=0

d(θα, θα+1)2

] 1
2

. (15)

Here, d(θα, θα+1) is the distance between θα and θα+1 with
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Figure 3. The approximate geodesic distances (a-c, e-g) between θLD and θSD and test error rates at θα (d, h). In (a-c, e-g), the solid
lines indicate segment-wise distances d(θα, θα+1), α ∈ {0, · · · , P − 1}, and the dashed lines indicate total distances d(θLD, θSD).

respect to the Fisher information metric Iα evaluated at θα,

d(θα, θα+1)2 = (θα+1 − θα)>Iα(θα+1 − θα), (16)

Iα = E(x,t)∈D̃

(
∂Lφ?,θ(x, t)

∂θ

)(
∂Lφ?,θ(x, t)

∂θ

)>∣∣∣∣∣
θ=θα

,

where D̃ is either D or a subset of D for ease of
computation, and Lφ?,θ(x, t) is a short-hand notation of
L(Cθ(Fφ?(x)), t). To compute a genuine geodesic distance,
one needs to compute the sum of Fisher-metric distances
between pairs of infinitesimally separated points along the
curve that minimizes the squared sum. This is computa-
tionally infeasible; we instead approximate the curve by the
straight line, as explained. In the experiment, we let D̃ be a
randomly chosen subset consisting of 5% of the entire train-
ing samples. We set P = 15. We evaluated d(θLD, θSD)
layer by layer.

Figure 3 now shows the approximated geodesic distances
and test error rates at θα.

Approximate geodesic distances. For CIFAR-10, FOCA
exhibits some orders-of-magnitude, say 40-180 times,
smaller distances d(θLD, θSD) than the other methods. For
CIFAR-100, FOCA exhibits 3-9 times smaller distances
than the other methods. We guess the reason why the
differences are moderate for the CIFAR-100 cases is that
point-like distribution is harder to obtain for CIFAR-100.
Nevertheless, FOCA exhibit smallest approximate geodesic
distances in all cases, and we think this is an implicit evi-
dence that the distribution of the FOCA features is simple

enough so that the discriminative function generated with
nD′ = nD is virtually reproducible when nD′ � nD.

Test error rates at θα. For FOCA, test error rates
are almost constant at all θα. Together with the small
d(θLD, θSD), two points θLD and θSD could be viewed
as virtually the same point, when FOCA is used. For
other methods, test error rates increase more rapidly toward
θSD = θ15.

4.3. Low-Dimensional Properties

Motivation. We now use classical component analyses to
clarify the low-dimensional structure of the FOCA features.

In this subsection we only show the CIFAR-10 results, be-
cause the CIFAR-100 results are qualitatively similar.

Principal Component Analysis (PCA). Figure 4 (a) shows
scatter plots of training-data features projected by 2D bases
of the PCA that is applied to all features. For a given class,
the projected FOCA features look nearly one-dimensional,
not a point-like, per class. This one-dimensional character-
istics is probably due to the use of softmax normalization at
the last layer, though we have no proof so far. In contrast,
the projected features of the other methods clearly span two
dimensions, roughly confined in an ellipse-like region, for a
given class.

Linear Discriminant Analyses (LDA) with normaliza-
tion. Next, we examine the LDA on features normalized
to unit lengths. Normalization is taken based on the ob-
servation that the 2D features in Fig. 4 (a) are distributed



Breaking Inter-Layer Co-Adaptation by Classifier Anonymization

-2000 -1000 0
f
1
(x)

-3000

-2000

-1000

0

1000
f 2

(x
)

-200 -100 0
f
1
(x)

-100

-50

0

50

f 2
(x

)

-100 -50 0
f
1
(x)

-100

-80

-60

-40

-20

0

f 2
(x

)

-100 -50 0
f
1
(x)

-80

-60

-40

-20

0

20

f 2
(x

)

-40 -20 0 20
f
1
(x)

-20

0

20

40

60

f 2
(x

)

(a) Training-data features projected by the PCA bases.
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(b) Training-data features first normalized to unit lengths then projected by the LDA bases,
constructed on the class-1, normalized features vs. the rest of the normalized features.
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(c) Test-data features first normalized to unit lengths then projected by the same LDA bases used in (b).

Figure 4. Two-dimensional visualization of 4096-dimensional, CIFAR-10 features. Methods are (from the left): FOCA (ours), Plain,
Noisy, Dropout, and Bach Normalization. Colors indicate true classes.

Table 1. The results of the class-1-vs-rest LDA with normaliza-
tion.

Method Eigenvalue Test error rate
FOCA (ours) 247.28 2.01%
Plain 5.74 2.71%
Noisy 7.49 2.86%
Dropout 5.81 2.78%
Bach Norm 7.28 2.43%

mostly along radial direction about a point close to the ori-
gin. Figure 4 (b) shows the 2D features that are normalized
and projected by the LDA bases described above. Only
class-1-vs-rest results are shown because no significant dif-
ferences are observed when replacing class-1 by another
class. Here, we can observe a remarkable differences; the
projected FOCA features are linearly separable with a fairly
large margin, compared to the characteristic scales of the
class-1 distribution or of the rest-of-the-class distribution.
The form of the feature distribution is close to point-like per
class, somewhat similar to the observation in the toy exper-
iment shown in Fig. 1 (b). In contrast, the other methods
exhibit linearly non-separable feature distributions.

Linear separability by the LDA with normalization.
The generalized eigenvalue computed in the LDA discussed
above are given in Table 1. The values are the largest ra-

tios of the between-class scatters to the within-class scatters
after linear projections. FOCA exhibits orders of magni-
tude larger generalized eigenvalue than other methods. This
supports the high level of linear separability of the FOCA
features. Figure 4 (c) shows the normalized features of test
data, projected by the same LDA bases, to see the gener-
alizability. Table 1 also shows the smallest possible test
error rates (class-1 vs. rest) by setting a threshold along the
principal axis. FOCA yields the lowest test error rate.

5. Conclusion
A naı̈ve joint optimization of a feature extractor and a clas-
sifier in a neural network often brings cases where both sets
of parameters are tied in a so complex way that the classifier
is irreplaceable without degrading the test performance. We
introduced a method called Feature-extractor Optimization
through Classifier Anonymization (FOCA), that is designed
to break unwanted inter-layer co-adaptation. FOCA pro-
duces a feature extractor that does not explicitly adapt to a
particular classifier. We gave a mathematical proposition
that guarantees a simple form of feature distribution un-
der special conditions; indeed, features form a point-like
distribution in a class-separable way. Different kinds of real-
dataset experiments under more general conditions provide
supportive evidences.
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Bengio, Y., Léonard, N., and Courville, A. C. Estimating
or propagating gradients through stochastic neurons for
conditional computation. arXiv:1308.3432, 2013.

Breiman, L. Bagging predictors. Machine Learning, 24:
123–140, 1996.

Finn, C., Abbeel, P., and Levine, S. Model-agnostic meta-
learning for fast adaptation of deep networks. In Interna-
tional Conference on Machine Learning (ICML), 2017.

Gal, Y. and Ghahramani, Z. Dropout as a Bayesian approx-
imation: Representing model uncertainty in deep learn-
ing. In International Conference on Machine Learning
(ICML), 2016.

Graves, A. Practical variational inference for neural net-
works. In Neural Information Processing Systems (NIPS),
2011.

Hara, K., Saitoh, D., and Shouno, H. Analysis
of dropout learning regarded as ensemble learning.
arXiv:1706.06859, 2017.

Helmbold, D. and Long, P. Surprising properties of dropout
in deep networks. Journal of Machine Learning Research,
18:1–28, 04 2018.

Helmbold, D. P. and Long, P. M. On the inductive bias
of dropout. Journal of Machine Learning Research, 16:
3403–3454, 2015.

Hinton, G. E., Srivastava, N., Krizhevsky, A., Sutskever,
I., and Salakhutdinov, R. Improving neural net-
works by preventing co-adaptation of feature detectors.
arXiv:1207.0580, 2012.

Huang, G., Sun, Y., Liu, Z., Sedra, D., and Weinberger,
K. Q. Deep networks with stochastic depth. In European
Conference on Computer Vision (ECCV), 2016.

Ioffe, S. and Szegedy, C. Batch normalization: Accelerat-
ing deep network training by reducing internal covariate
shift. In International Conference on Machine Learning
(ICML), 2015.

Kobayashi, T. Sharing convnet across heterogeneous tasks.
In International Conference on Neural Information Pro-
cessing (ICONIP), 2017.

Krizhevsky, A. and Hinton, G. Learning multiple layers of
features from tiny images. Technical Report 4, 2009.

Lee, C.-Y., Gallagher, P., and Tu, Z. Generalizing pool-
ing functions in convolutional neural networks: Mixed,
gated, and tree. In International Conference on Artificial
Intelligence and Statistics (AISTATS), 2016.

Nair, V. and Hinton, G. E. Rectified linear units improve re-
stricted boltzmann machines. In International Conference
on Machine Learning (ICML), 2010.

Ren, Y., Zhang, L., and Suganthan, P. N. Ensemble classifi-
cation and regression-recent developments, applications
and future directions [review article]. IEEE Computa-
tional Intelligence Magazine, 11(1):41–53, 2016.

Simonyan, K. and Zisserman, A. Very deep convolutional
networks for large-scale image recognition. In Interna-
tional Conference on Learning Representations (ICLR),
2015.

Singh, S., Hoiem, D., and Forsyth, D. Swapout: Learning
an ensemble of deep architectures. In Neural Information
Processing Systems (NIPS), 2016.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I.,
and Salakhutdinov, R. Dropout: A simple way to prevent
neural networks from overfitting. Journal of Machine
Learning Research, 15:1929–1958, 2014.

Wager, S., Wang, S., and Liang, P. S. Dropout training as
adaptive regularization. In Neural Information Processing
Systems (NIPS), 2013.

Wan, L., Zeiler, M., Zhang, S., LeCun, Y., and Fergus, R.
Regularization of neural network using dropconnect. In
International Conference on Machine Learning (ICML),
2013.

Warde-Farley, D., Goodfellow, I. J., Courville, A. C., and
Bengio, Y. An empirical analysis of dropout in piecewise
linear networks. arXiv:1312.6197, 2013.

Watanabe, S. Algebraic geometry and statistical learning
theory. Cambridge University Press, 2009.

Yosinski, J., Clune, J., Bengio, Y., and Lipson, H. How
transferable are features in deep neural networks? In
Neural Information Processing Systems (NIPS), 2014.

Zahavy, T., Sivak, A., Kang, B., Feng, J., and Mannor, H.
X. S. Ensemble robustness and generalization of stochas-
tic learning algorithms. In Workshop of International
Conference on Learning Representations (ICLR), 2018.

Zeiler, M. and Fergus, R. Stochastic pooling for regulariza-
tion of deep convolutional neural networks. In Interna-
tional Conference on Learning Representation (ICLR),
2013.


