

Electronic Imaging 2021, Image Processing: Algorithms and Systems

Does end-to-end trained deep model always perform better than non-end-to-end counterpart?

<u>Ikuro Sato</u>^{1,2} Guoqing Liu¹ Kohta Ishikawa¹ Teppei Suzuki¹ Masayuki Tanaka²

¹Denso IT Laboratory, Inc., Japan ²Tokyo Institute of Technology, Japan

- Introduction
- Overview: FOCA

FOCA: Feature-extractor Optimization through Classifier Anonymization I. Sato, et al., ICML2019.

- Experiment
 - Improvement over Sato et al.
 - Comparison with end-to-end training methods
 - Effect of network fine-tuning after FOCA
- Summary

Introduction

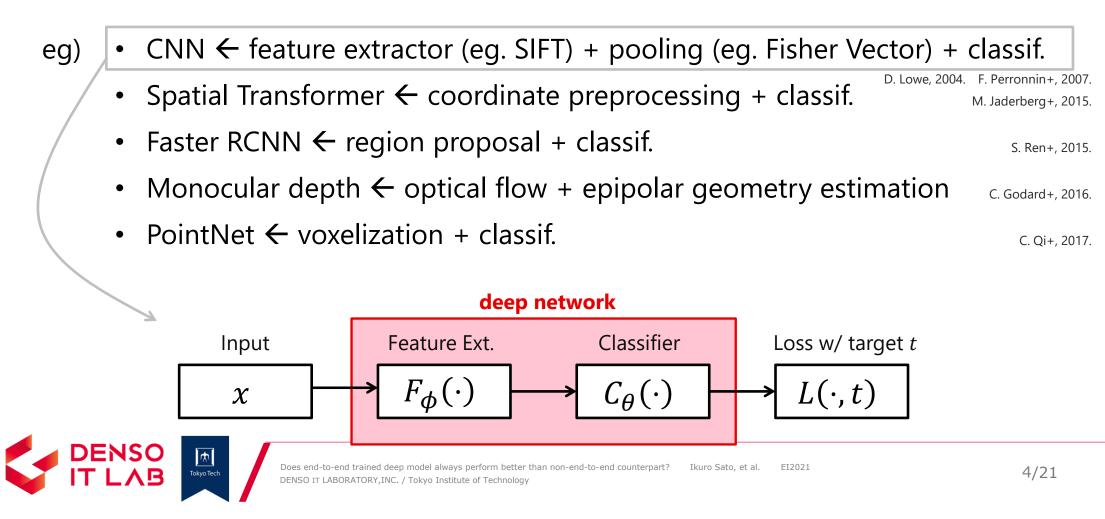
• Overview: FOCA

FOCA: Feature-extractor Optimization through Classifier Anonymization I. Sato, et al., ICML2019.

- Experiment
 - Improvement over Sato et al.
 - Comparison with end-to-end training methods
 - Effect of network fine-tuning after FOCA
- Summary

Flourishing E2E network optimization

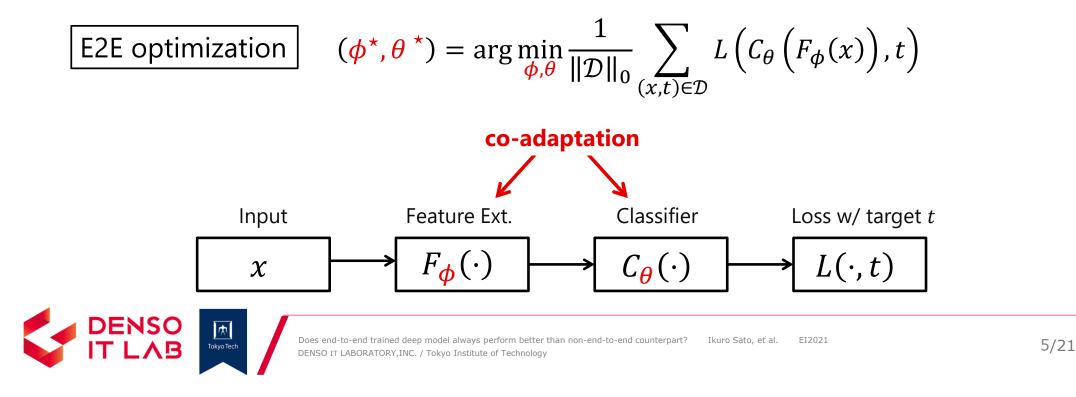
Successful by replacing intermediate tasks with learnable layers



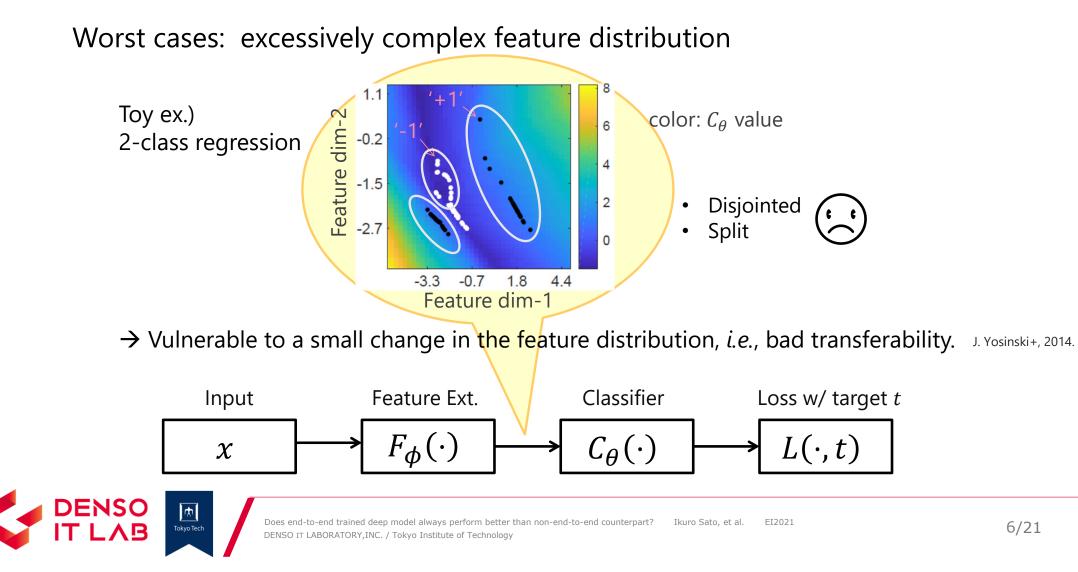
Is E2E optimization always good?

Co-adaptation between feature extractor and classifier can occur. G. Hinton+, 2012.

- Feature distribution is only good at a particular decision boundary.
- Vice versa.



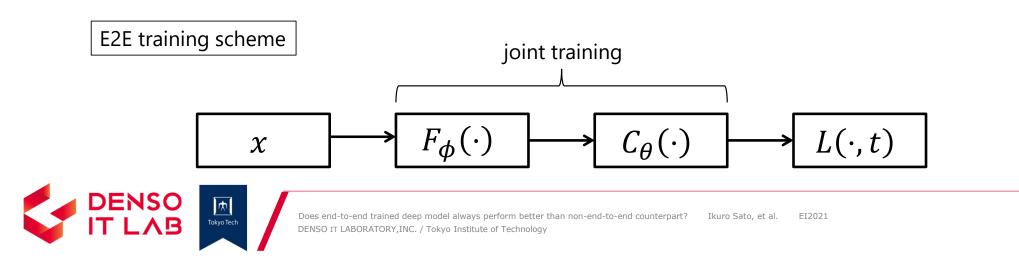
Is E2E optimization always good?



Question we try to answer

- Q. Does end-to-end (E2E) trained deep model always perform better than non-end-to-end counterpart?
- A. Not always. We show empirical evidences where a non-E2E training method known as FOCA outperforms strong E2E counterparts in image classification tasks.

FOCA: Feature-extractor Optimization through Classifier Anonymization

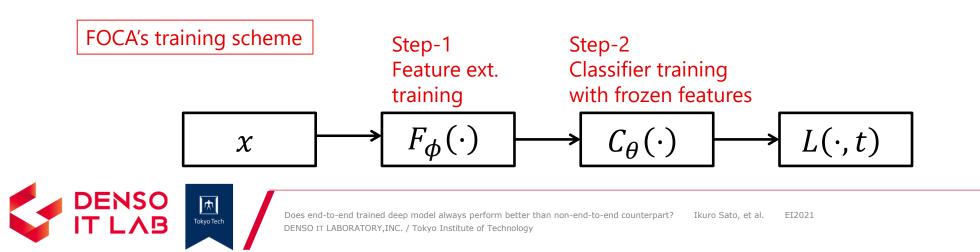


7/21

Our answer

- Q. Does end-to-end (E2E) trained deep model always perform better than non-end-to-end counterpart?
- A. Not always. We show empirical evidences where a non-E2E training method known as FOCA outperforms strong E2E counterparts in image classification tasks.

8/21



FOCA: Feature-extractor Optimization through Classifier Anonymization

- Introduction
- Overview: FOCA
- Experiment
 - Improvement over Sato et al.
 - Comparison with end-to-end training methods

I. Sato, et al., ICML2019.

- Effect of network fine-tuning after FOCA
- Summary

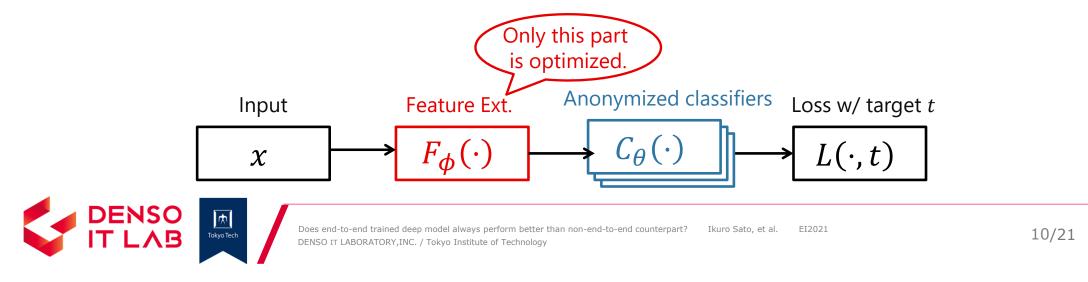
FOCA: Feature-extractor Optimization through Classifier Anonymization

FOCA: Feature-extractor Optimization through Classifier Anonymization

FOCA
$$\phi^{\star} = \arg \min_{\phi} \frac{1}{\|\mathcal{D}\|_{0}} \sum_{(x,t)\in\mathcal{D}} \mathbb{E}_{\theta\sim\Theta_{\phi}} L\left(C_{\theta}\left(F_{\phi}(x)\right), t\right)$$

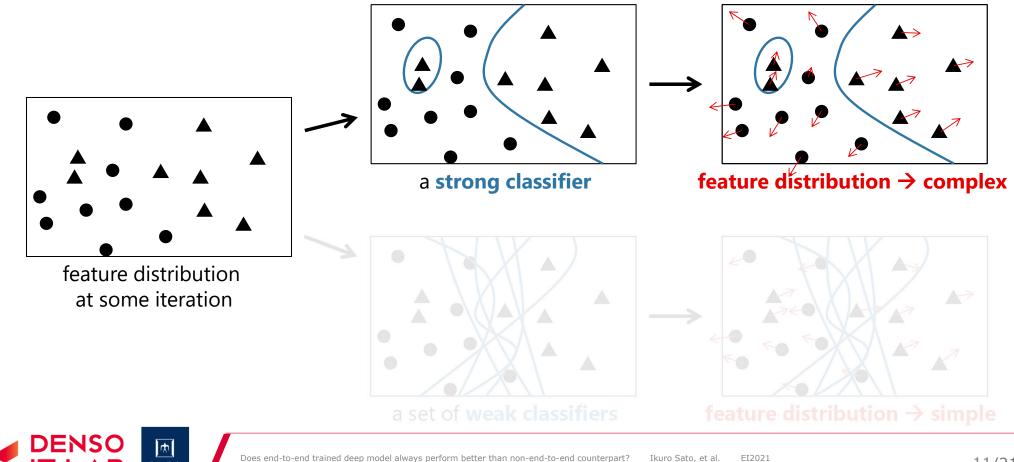
Random weak classifier: $\theta\sim\Theta_{\phi}$

→ Feature extractor is optimized wrt an ensemble of weak classifiers, not a particular strong classifier.



Why weak ??

strong classifier \rightarrow Features do adapt...



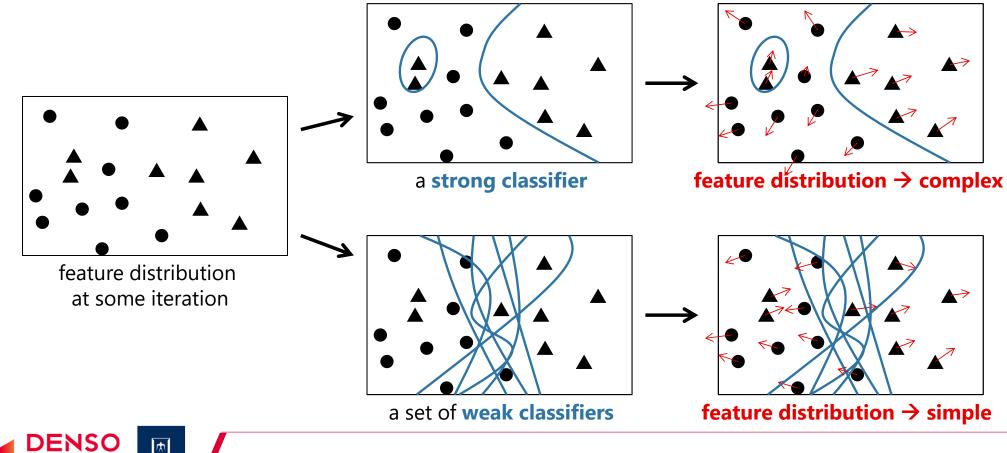
 Does end-to-end trained deep model always perform better than non-end-to-end counterpart?
 Ikuro Sato, et al.
 EI2

 DENSO IT LABORATORY,INC. / Tokyo Institute of Technology
 Endeptile
 Endeptile</

11/21

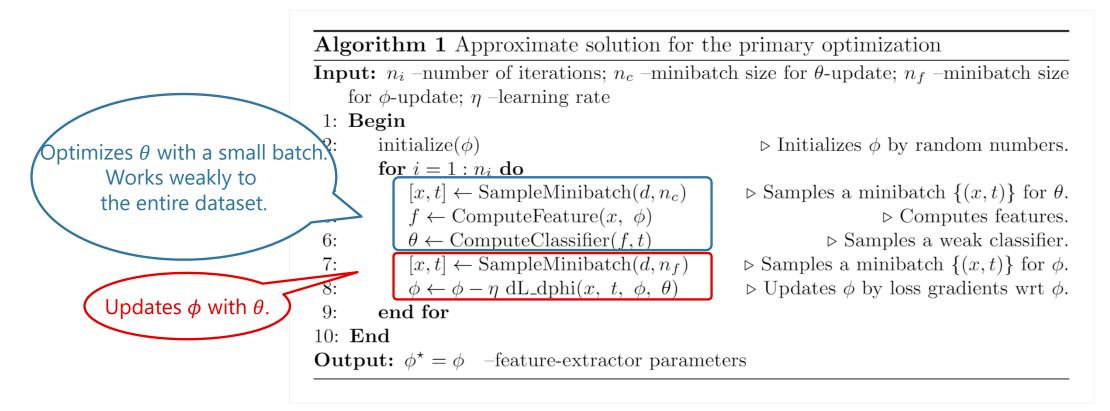
Why weak ??

many random weak classifiers \rightarrow Features do not adapt to a particular one.



Pseudocode

source code: https://github.com/DensoITLab/FOCA-v1

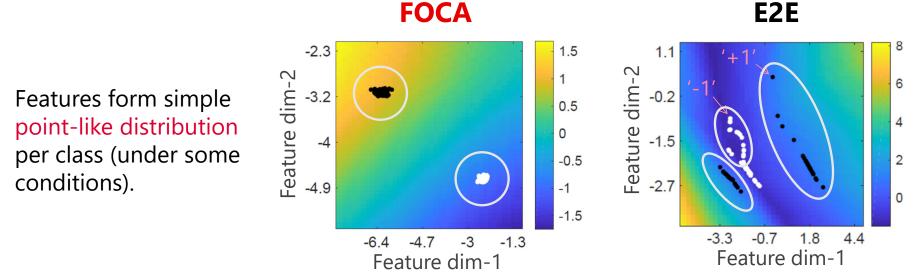


* Weak classifier θ is discarded after a single use.

Property: simple feature distribution

In words [I. Sato, et al., ICML2019],

If feature extractor has an enough representation ability, all input data of the same class are projected to a single point in the feature space in a class-separable way under certain conditions.



Does end-to-end trained deep model always perform better than non-end-to-end counterpart? Ikuro Sato, et al. EI2021 DENSO IT LABORATORY,INC. / Tokyo Institute of Technology 14/21

- Introduction
- Overview: FOCA

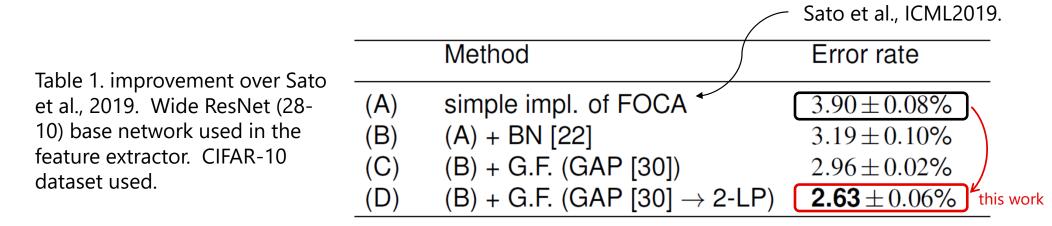
FOCA: Feature-extractor Optimization through Classifier Anonymization I. Sato, et al., ICML2019.

- Experiment
 - Improvement over Sato et al.
 - Comparison with end-to-end training methods
 - Effect of network fine-tuning after FOCA
- Summary

Improvement over Sato et al., ICML2019

Careful hyperparameter tuning with following techniques greatly improved FOCA's generalization.

- global features (GF) with
 - Global Average Pooling (GAP) after convolution part
 - 2-layer perceptron (2-LP) after GAP
- Batch Normalization



Comparison with E2E training methods

The non-E2E training method (FOCA) outperformed strong baselines that use E2E training under fair settings.

Table 2. Test error rate (%) comparison of FOCA and the E2E counterpart using the Wide ResNet (28-10) architecture [55]. TIN represents Tiny ImageNet.

Method	CIFAR-10	CIFAR-100	TIN
original from [55]		18.85	N/A
cutout (from [14])	3.08 ± 0.16	18.41 ± 0.27	N/A
cutout (by us)		17.99 ± 0.03	
FOCA w/ cutout	2.63 ±0.06	17.22 ± 0.12	36.71 ± 0.25

this work

[14] Terrance DeVries and Graham W Taylor. Improved regularization of convolutional neural networks with cutout. *arXiv preprint arXiv:1708.04552*, 2017. Table 3. Test error rate (%) comparison of FOCA and the E2E counterpart using PyramidNet architecture [16]. R.E. represents Random Erasing [58].

Method	CIFAR-10	CIFAR-100
original from [16] shakedrop + R.E. (from [52]) FOCA w/ shakedrop + R.E.	2.31	16.35 ± 0.24 12.19 11.82 ± 0.1

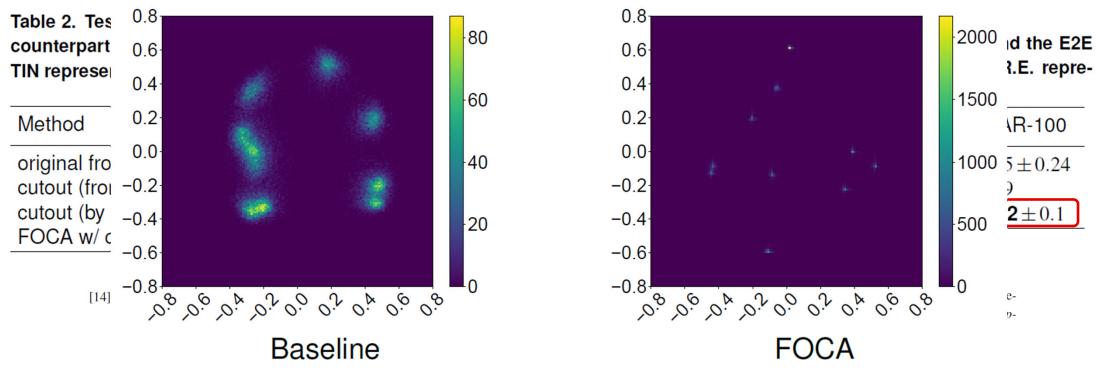
this work

[52] Yoshihiro Yamada, Masakazu Iwamura, and Koichi Kise. Shakedrop regularization. In *International Conference on Learning Representations (ICLR) Workshop*, 2018.

Comparison with E2E training methods

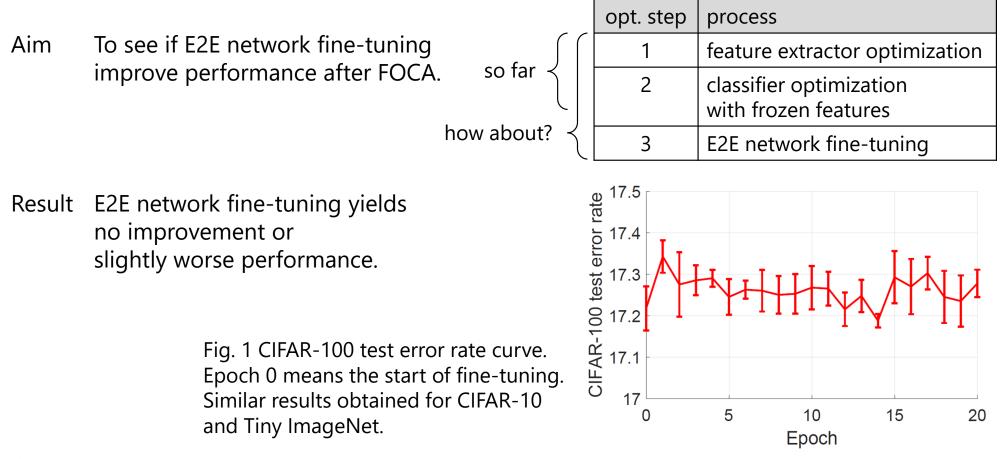
The nc

2D histograms of normalized CIFAR-10 features projected by PCA. FOCA exhibits well-separated, point-like distribution. ttings.



Does end-to-end trained deep model always perform better than non-end-to-end counterpart? Ikuro Sato, et al. EI2021 DENSO IT LABORATORY, INC. / Tokyo Institute of Technology 18/21

Effect of network fine-tuning after FOCA



- Introduction
- Overview: FOCA

FOCA: Feature-extractor Optimization through Classifier Anonymization I. Sato, et al., ICML2019.

- Experiment
 - Improvement over Sato et al.
 - Comparison with end-to-end training methods
 - Effect of network fine-tuning after FOCA
- Summary

Summary

Question we try to answer

Does end-to-end trained deep model always perform better than non-end-to-end counterpart?

Our answer

Not always, with supportive evidences:

- We found evidences in which a non-E2E training method, FOCA, outperforms strong E2E training counterparts on CIFAR-10, 100, and Tiny ImageNet.
- E2E network fine-tuning after FOCA yields no improvement or slightly worse performance.

