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Abstract
It has been rigorously demonstrated that an end-to-end

(E2E) differentiable formulation of a deep neural network can
turn a complex recognition problem into a unified optimization
task that can be solved by some gradient descent method. Al-
though E2E network optimization yields a powerful fitting ability,
the joint optimization of layers is known to potentially bring situa-
tions where layers co-adapt one to the other in a complex way that
harms generalization ability. This work aims to numerically eval-
uate the generalization ability of a particular non-E2E network
optimization approach known as FOCA (Feature-extractor Op-
timization through Classifier Anonymization) that helps to avoid
complex co-adaptation, with careful hyperparameter tuning. In
this report, we present intriguing empirical results where the
non-E2E trained models consistently outperform the correspond-
ing E2E trained models on three image-classification datasets.
We further show that E2E network fine-tuning, applied after the
feature-extractor optimization by FOCA and the following classi-
fier optimization with the fixed feature extractor, indeed gives no
improvement on the test accuracy. The source code is available
at https: // github. com/ DensoITLab/ FOCA-v1 .

Introduction
End-to-End (often abbreviated as E2E) differentiable formu-

lations using deep neural networks for visual recognition prob-
lems have been gaining much attention in the research commu-
nity. The popularity is largely attributed to the flexibility in for-
mulation to turn sequential sub-tasks into a unified optimiza-
tion task that can be solved by some sort of gradient descent
solvers. One of the best describing examples of replacing inter-
mediate processings by learnable layers is convolutional neural
network (see pioneering work, [29, 27]). It replaces a combina-
tion of local-feature extractor [13, 32, 4, 49, 8, 2], region pool-
ing [44, 12, 37, 24], and classifier [48, 6, 15, 21, 43, 7]. Some
more recent examples include: Spatial Transformer Network [23]
replacing spatial-coordinate preprocessing [18] and classification,
Faster RCNN [41] replacing region proposal [47] and classifica-
tion, PointNet [39] replacing 3D-point voxelization and classifi-
cation [33, 51, 40], OpenPose [10, 9] replacing a framework of
person detection and landmark localization [38, 46, 36].

Besides a great success of E2E network optimization ap-
proaches, there has been much effort to develop non-E2E net-
work optimization methods. One of the important research goals
here is to obtain generic data representations that bring high
performance in the task of interest by pre-training network on
large-scale dataset(s). Unsupervised representation learning ex-
emplifies the non-E2E network optimization approach, where

in most cases the network is first trained unsupervisedly on a
large dataset and an add-on classifier is then trained with a dif-
ferent objective on either the same dataset or a different target
dataset [5, 35, 20, 3, 17, 11]. Domain adaptation and transfer
learning [57, 54, 31, 50, 25, 45, 26] also belong to the non-E2E
training category as a whole. Their aim is to extend the dataset to
more than one in a sequential fashion, where one expects that the
supervised training on the first dataset provides feature extractors
beneficial to the objective for the second dataset.

A natural question is, Which is better, E2E or non-E2E? It
is widely believed that an E2E network optimization generally
gives a better performance. Minimizing a unified loss function of
the whole network parameters likely yields better fitting ability;
however, it does not necessarily yield better generalization ability.
E2E network optimization may even bring situations where layers
co-adapt one to the other in a complex way that harms generaliza-
tion ability [19, 53]. We aim to find solid cases where a non-E2E
training method consistently outperforms an E2E counterpart un-
der fair settings. In this work, we employ a particular non-E2E op-
timization method known as FOCA: Feature-extractor Optimiza-
tion through Classifier Anonymization [42]. As overviewed in the
next section, FOCA is free from co-adaptation between feature
extractor and classifier, since the feature extractor is not optimized
to a particular strong classifier due to the classifier anonymization
technique. In the original work [42], the model performance af-
ter FOCA was not particularly high; however, we show that it can
be significantly improved by carefully reviewing optimization set-
tings. In this work, we focus on problems of image classification
without using external datasets.

Our contributions are summarized as follows.

1. We empirically confirmed that the model performance of
FOCA can be significantly improved compared to the origi-
nal work [42] after careful hyperparameter tuning, and we
show solid evidences where FOCA, a non-E2E training
method, outperforms strong E2E counterparts in image clas-
sification tasks.

2. We found a counter-intuitive phenomenon, where E2E net-
work fine-tuning, after optimizing a feature extractor by
FOCA and optimizing the following classifier with the fixed
feature extractor, gives no improvement in test performance.

Feature-extractor Optimization through Clas-
sifier Anonymization (FOCA): a Review

In this section, we briefly overview the motivation, formula-
tion, optimization strategy, and feature property of FOCA [42] as
well as the limitation of work of Sato, et al. [42].

https://github.com/DensoITLab/FOCA-v1


The motivation of FOCA is to break co-adaptation between
a feature extractor part and a classifier part of a deep neural net-
work. An E2E training of feature extractor and classifier can
potentially bring situations where both are tied in a very special
way, known as co-adaptation [19, 53], so that the feature distribu-
tion adapts to particular decision boundaries and vice versa. This
too-specific tiedness likely brings negative effects when transfer-
ring the feature extractor after separating the network into two
blocks [53]. The idea of FOCA is to train only the feature ex-
tractor supervisedly with random weak classifiers generated at
every iteration or at every small set of iterations. This classi-
fier anonymization technique prevents the feature extractor from
adapting to a specific strong classifier. Then, after the feature ex-
tractor is obtained by FOCA, a final classifier is optimized with
the feature extractor fixed. Apparently, the network is not E2E
optimized.

Let x be an input data, Fφ (·) be a feature extractor with pa-
rameter set φ , Cθ (·) be a classifier with parameter set θ , and L(·; t)
be a sample-wise loss function with a target value t. In FOCA, the
primary optimization, defined as the optimization of the feature
extractor, is given by

φ
? = argmin

φ
∑

(x,t)∈D
∑

θ∈Θφ

L(Cθ (Fφ (x)); t), (1)

where Θφ is a set of weak classifiers1, and D is the training
dataset. Sato, et al. [42] introduced a particular way of generating
weak classifiers, by first sampling a small batch of data and then
computing a strong classifier with respect to that batch. They re-
gard that classifiers generated in this way generally work weakly
to the entire dataset (This is why they call it as weak classifier).

Once the feature extractor is obtained, a new classifier is built
with fixed feature extractor as

θ
? = argmin

θ
∑

(x,t)∈D
L(Cθ (Fφ ?(x)); t). (2)

We call the process to obtain θ? as the secondary optimization.
The optimization strategy in Sato, et al. [42] is to sample a

minibatch from D, generate a single weak classifier θ , and update
feature-extractor φ with stochastic gradients at each iteration.

Sato, et al. showed theoretically under certain conditions
that features of the same class form a point-like distribution while
features of different classes do not [42]. It is considered as an im-
plicit optimality caused by the classifier anonymization, because
the objective itself does not contain any of metric-learning type
regularization terms at least explicitly.

The empirical results shown by Sato, et al. [42] support the
point-like behavior; however, they do not discuss the potential of
FOCA as a regularizer. Their experiments used neither modern,
strong deep models nor a network normalization technique such
as Batch Normalization (BN) [22]. We find that use of BN and
global image features instead of local features greatly improve
the performance of FOCA, as we discuss in the next section.

Experiments
The main purpose of the experiments is to show test perfor-

mance comparisons between FOCA, which is a non-E2E network
1While the original paper defines Θφ as a probability distribution for

weak classifiers, we define it as a set in this work without a loss of gener-
ality

training method, and its E2E counterpart under fair experimental
settings. We first show how the FOCA performance itself can be
improved from the results presented by Sato, et al. [42]. Next,
we show main results of the test performance comparisons with
strong baseline methods. We then investigate whether the perfor-
mance of the network trained by FOCA can be further improved
by a following E2E network fine-tuning technique. Finally, we
visualize feature distributions through low-dimensional analyses
to clarify differences among training methods.
General Settings shared in all experiments. CIFAR-10 [28],
CIFAR-100 [28], and Tiny ImageNet [1] datasets are evaluated
with Wide ResNet [55, 14] and PyramidNet [16, 52] architec-
tures. Cross entropy loss function is used with softmax output.
Nesterov’s Accelerated Gradient (NAG) method [34] with the mo-
mentum rate of 0.9 is used. Batch Normalization [22] is used. All
images are zero-padded by 4 pixels on each side. Images from
Tiny ImageNet are first resized to 32× 32 spatial size. As data
augmentation, random cropping is applied to extract 32× 32 re-
gion in all cases. Random horizontal mirroring with 50% proba-
bility is also used. Unless otherwise indicated, following hyper-
parameters are adopted. Minibatch size of 128 is used. Weight
decay is used with rate of 5e-4 for Wide ResNet architecture and
1e-4 for PyramidNet architecture. For Wide ResNet, the training
duration is 600 epochs, and the learning rate is dropped by a factor
of 10 at 300, 400, and 500 epochs. For PyramidNet, the learning
rate is annealed by the 1800-epoch cosine annealing rule just as
in [52]. The size of cutout [14] is 16×16 for CIFAR-10, 8×8 for
CIFAR-100, and 8× 8 for Tiny ImageNet. Parameters for Ran-
dom Erasing [58] data augmentation are the ones used in [52].
A Value after ± also indicates one standard deviation calculated
from 4 trials.
Settings of FOCA shared in all experiments. A random weak
classifier is trained with learning rate of 0.03 and weight decay
rate of 0.01. The batch size used in the random weak classifier
generation is 100 for CIFAR-10, 1000 for CIFAR-100, and 2000
for Tiny ImageNet. A generated random weak classifier is repeat-
edly used by 32 times. The secondary classifier optimization with
a fixed feature extractor uses a constant learning rate of 0.003 and
a weight decay rate of 0.01.

Improvement over Sato, et al. [42]
We first report that test performance of FOCA can be signif-

icantly improved from the one reported in Sato, et al. [42]. Their
emphasis was to demonstrate how the obtained features form sim-
ple distributions. Our focus here is to bring out its potential as a
regularizer. We conducted a series of experiments and figured out
that employing Batch Normalization (BN) [22] and use of global
feature extractor (instead of local feature extractor) as well as
careful hyperparameter tuning can significantly improve the test
performance of FOCA.

Table 1 shows test performance improvements over the work
of Sato, et al. [42]. Adding BN, adding BN and Global Av-
erage Pooling (GAP) [30], and adding BN and GAP followed
by 2-LP (MLP having 2 weight layers) consistently improve the
performance. Though Sato, et al. [42], adopted the classifier
anonymization technique to local features, we think that one bet-
ter adopts the technique to global features to obtain a simple
feature distribution. The point-like distribution property is only
proved under several conditions, including the use of global fea-



Table 1. The improvement of test performance of FOCA over
the work of Sato, et al. [42]. The convolutional part of Wide
ResNet [55] is used as the base network of the feature ex-
tractor. The classifier part has one weight layer in all cases.
CIFAR-10 dataset [28] is used. ‘2-LP’ indicates an MLP having
2 weight layers. G.F. indicates global features.

Method Error rate

(A) simple impl. of FOCA 3.90±0.08%
(B) (A) + BN [22] 3.19±0.10%
(C) (B) + G.F. (GAP [30]) 2.96±0.02%
(D) (B) + G.F. (GAP [30]→ 2-LP) 2.63±0.06%

Table 2. Test error rate (%) comparison of FOCA and the E2E
counterpart using the Wide ResNet (28-10) architecture [55].
TIN represents Tiny ImageNet.

Method CIFAR-10 CIFAR-100 TIN

original from [55] 3.89 18.85 N/A
cutout (from [14]) 3.08±0.16 18.41±0.27 N/A
cutout (by us) 3.10±0.04 17.99±0.03 37.05±0.25
FOCA w/ cutout 2.63±0.06 17.22±0.12 36.71±0.25

Table 3. Test error rate (%) comparison of FOCA and the E2E
counterpart using PyramidNet architecture [16]. R.E. repre-
sents Random Erasing [58].

Method CIFAR-10 CIFAR-100

original from [16] 3.31±0.08 16.35±0.24
shakedrop + R.E. (from [52]) 2.31 12.19
FOCA w/ shakedrop + R.E. 1.76±0.06 11.82±0.1

tures. Local features are computed from a local part of input im-
age so they are likely to be distinct within a class. Table 1 pro-
vides a supportive evidence that one better uses global features
when applying the classifier anonymization technique.

Comparison with Strong Baselines
The experimental purpose in this subsection is to evaluate the

generalization ability of FOCA against E2E optimization. Below
we discuss the experimental settings and results for two major
deep architectures.
Wide ResNet [55, 14]: Settings. We basically follow [14] for
the training detail. The learning rate of the baseline model is 0.1
for CIFAR-10 and -100, and 0.05 for Tiny ImageNet. The train-
ing duration is 200 epochs, and the learning rate is dropped by
a factor of 5 at 60, 120, and 160 epochs for the baseline mod-
els. We tried a few times longer training with similar learning rate
scheduling, but there was no improvement in test accuracy. We
pre-examined the baseline models with and without dropout, and
indeed the one without dropout slightly performed better. Thus,
we decided not to use dropout at all. The baseline architecture
has the same convolutional block of Wide ResNet, GAP, and 1-
LP, just as [14]. We pre-examined a version of 3-LP after GAP,
but it did not improve the baseline accuracy. The initial learn-

ing rate for the feature extractor training with FOCA is 0.03 for
CIFAR-10, 0.1 for CIFAR-100, and 0.05 for Tiny ImageNet. A
random weak classifier is updated 64 times for CIFAR-10, 128
times for CIFAR-100, and 256 for Tiny ImageNet. The training
duration for the secondary optimization is 1 epoch for CIFAR-10,
15 epochs for CIFAR-100 and Tiny ImageNet.

Wide ResNet [55, 14]: Results. Table 2 shows test error rates
of the Wide ResNet models. We put mean values and standard
deviations (after ± symbols) calculated from 4 independent trials
in our results. FOCA consistently outperforms the strong base-
line results for CIFAR-10, CIFAR-100 and Tiny ImageNet. The
gaps between the mean test error rates are clearly wider than the
corresponding standard deviations. We would like to emphasize
again that the feature extractor and the classifier in FOCA are not
jointly optimized –the classifier is trained with the fixed feature
extractor.

PyramidNet [16, 52]: Settings. The initial learning rate of for
the feature extractor training with FOCA is 0.1 for CIFAR-10 and
CIFAR-100. A random weak classifier is updated 64 times for
CIFAR-10 and 128 times for CIFAR-100. The training duration
for the secondary optimization is 1 epoch for CIFAR-10 and 10
epochs for CIFAR-100.

PyramidNet [16, 52]: Results. Table 3 shows test error rates
of the PyramidNet model. Again, FOCA outperforms the strong
baseline results for CIFAR-10 and CIFAR-100 tested here, and
the gaps between the mean test accuracies are clearly wider than
the corresponding standard deviations. Combining FOCA with
other type of data augmentation methods such as mixup [56] is
interesting, thus we leave it for future work.

Effects of Fine-Tuning after FOCA

The experimental purpose in this subsection is to examine
the effects of fine-tuning after non-E2E training. All the exper-
iments shown so far do not utilize a technique of network fine-
tuning at all. That means, after a feature extractor is generated by
FOCA, the following classifier is optimized with frozen features
only. Therefore, it is not likely that the feature extractor is opti-
mal for the classifier on the training set. In this subsection, we
show empirical results in order to answer the question: Does E2E
fine-tuning after independently optimizing feature extractor with
FOCA and classifier improve the test performance?

Procedure. We take our non-E2E trained models that have the
Wide ResNet base architecture and, for each model we fine-tune
the whole network parameters in an E2E manner. Learning rates
used in the fine-tuning stage are set as the final learning rates used
in the primary optimization stages. Decay rate of 5e-4 is used.

Results. Figure 1 shows the test error rate curves for E2E fine-
tuning after pre-trained with FOCA. In all cases, the mean val-
ues of the test error rates are fluctuated well within the error
bars, i.e., the fine-tuning gives no improvements. The possible
reason why the E2E fine-tuning after FOCA gives no improve-
ment on the generalization would be that the E2E fine-tuning
brings co-adaptation between the feature extractor and classifier
at some level. That is, the feature distribution becomes optimized
to specific decision boundaries and vice versa, lacking robustness
against small change in feature distribution.



0 5 10 15 20
Epoch

2.4

2.5

2.6

2.7

2.8

C
IF

A
R

-1
0 

te
st

 e
rr

or
 r

at
e

0 5 10 15 20
Epoch

17

17.1

17.2

17.3

17.4

17.5

C
IF

A
R

-1
00

 te
st

 e
rr

or
 r

at
e

(a) CIFAR-10 (b) CIFAR-100

0 5 10 15 20
Epoch

36

36.5

37

37.5

T
in

y 
Im

ag
eN

et
 te

st
 e

rr
or

 r
at

e

(c) Tiny ImageNet

Figure 1. Test error rate curves (in %) during fine-tuning. The networks

are pre-trained in a non-E2E fashion by FOCA and then by linear classifier

optimization. The sizes of the error bars indicate one standard-deviations

calculated from 4 trials. In each case, fine-tuning gives no improvement.

Visualization of Feature Distribution
In this subsection, we investigate the forms of feature distri-

butions to see if they can characterize generalizability.
Procedure. We take the Wide ResNet models already discussed
and compute features of respective training sets. Since feature
vectors have large norm discrepancies in a given dataset, we first
normalize each feature vector so that the L2 norm becomes one.
We then apply PCA to features within a given (sub-)dataset to
reduce the dimension into two for visualization. The square grid
is prepared for population counting to generate a histogram. The
grid size is given by the square root of the maximum eigenvalue
given by PCA, divided by 30.
Results. Figure 2 shows histograms of data points in the fea-
ture spaces after the dimensionality reduction. FOCA features
very clearly exhibit class-wise point-like distribution as dis-
cussed in [42], even when various regularizing techniques (e.g.,
cutout [14], shakedrop [52], Random Erasing [58], BN [22])
are adopted. For example, the right figure of Fig. 2 (a) has 10
strong peaks, each of which consists of data points of an identi-
cal class. In contrast, features of the E2E counterparts are much
more spread, possibly indicating that point-like feature distribu-
tion helps enhancing generalization ability.

Conclusion
To answer the question: Which is better, E2E or non-E2E?,

we investigate performance gaps between them using strong deep
models in image classification problems. We found rich examples
where the non-E2E training method known as FOCA [42] outper-
forms E2E counterparts. Co-adaptation breaking functionality of
FOCA likely explains the performance gains.
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[24] Hervé Jégou, Matthijs Douze, Cordelia Schmid, and Patrick Pérez.
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