Smooth Transfer Learning
for Source-to-Target Generalization

Keita Takayama'* Ikuro Sato' *
fTokyo Institute of Technology, Japan Denso IT Laboratory, Japan
ktakayam@ks.c.titech.ac. jp isato@c.titech.ac.jp

Teppei Suzuki? Rei Kawakami'
suzuki.teppei@core.d-itlab.co. jp reikawa@c.titech.ac. jp
Kuniaki Utof Koichi Shinoda
uto@c.titech.ac.jp shinoda@c.titech.ac.jp
Abstract

Transfer learning for deep models has shown great success for various recognition
tasks. Typically, a backbone network is pre-trained on a source dataset, then
fine-tuned on a target dataset. We considered that when both datasets are at
hand, learning them simultaneously at least for some period of iterations would
yield higher test performance rather than the step-wise optimization. We propose
Smooth Transfer Learning, which uses a learnable scheduler function for the loss
coefficients so that degrees of contributions from two datasets can be smoothly
changed along training time for optimal target performance. The scheduler function
is designed so that it can express either pre-training-then-fine-tuning or multi-task
learning with fixed weights as special cases. Our method consistently outperforms
these special cases in object classification with CIFAR-10 and CIFAR-100, and in
digit classification with SVHN and MNIST.

1 Introduction

It is widely known that domain gap between the training and test deteriorates generalizability of a
machine-learning model. If, however, one has even a small dataset from the target domain at training
time, there is a higher chance to greatly improve the model performance. Transfer learning is one of
the popular methods [[1} 12} 3 4] for such cases. The popularity stems from the fact that the model
fine-tuning on a target dataset likely improves performance compared to direct training on a target
dataset from random initialization. The performance gain is reasoned by the generalizability of
feature extractors obtained by the pre-training [3]], especially when a massive source dataset is used.

However, the performance gain becomes negligible [S] or even negative [[6] under certain conditions.
He et al. have shown evidences [S]] that direct training on a target detection dataset with sufficiently
many iterations yields no clear performance drop compared to fine-tuning after pre-training on a large
dataset such as ImageNet [7]]. Fine-tuning can even deteriorate the performance when source and
target domains significantly differ [6]. This type of conflicting settings is disregarded in this work.

Is it best to adopt the step-wise optimization; i.e., fine-tuning on a target dataset after pre-training
on a source dataset (“pre-training-then-fine-tuning")? We hypothesized that when both datasets
are at hand, learning both datasets simultaneously for an entire period, or at least for some period

*Equal contribution.

35th Conference on Neural Information Processing Systems (NeurIPS 2021), Sydney, Australia.

of iterations would yield higher test performance rather than the step-wise optimization. Switching
datasets in the middle of training almost surely deteriorates performance for the source domain
towards the end; therefore, it may limit the generalizability of the feature extractors. When data from
both datasets are used for update, the task required by the source dataset likely works as regularizer,
which is somewhat similar to auxiliary training [8]].

A non-triviality about the above idea of simultaneous learning is the asymmetry between the training
and test objectives. The training objective now consists of two sub-objectives from the source and
target tasks, while the test objective is solely from the target task. Naive minimization of weighted
loss functions with either constant weights [9]] or with adaptive weights [10}[11] as seen in multi-task
learning may not be the best strategy for the test objective. In this work, we employ hyperparameter
optmization scheme [[12]], as it can handle an arbitrary metric for the validation dataset, to optimize a
specially-designed, learnable scheduler function for the source and target loss weights.

Contributions of this work are summarized as follows:

* We propose Smooth Transfer Learning that generalizes the popular practice of pre-training-then-
fine-tuning by introducing a specially-designed, learnable scheduler function for source and target
loss weights. The proposed method can express pre-training-then-fine-tuning and multi-task
learning with fixed weights as special cases.

* We demonstrate that the proposed method consistently outperforms pre-training-then-fine-tuning
and multi-task learning with fixed weights for object classification task using CIFAR-10 and
CIFAR-100 datasets [13] and digit classification task using SVHN [14]] and MNIST [[15] datasets.

* We report intriguing tendencies found by experiments such that the semi-optimized scheduler
function approaches pre-training-then-fine-tuning behavior as the size of the target dataset becomes
small, and approaches the behavior of multi-task learning with fixed weights as the size of the
target dataset becomes large. In the intermediate region, the semi-optimized scheduler function
prefers a transition period that gradually switch from the source to the target dataset.

2 Smooth Transfer Learning

We assume that a source dataset D and a target dataset for classification are given. The target
dataset is splitted into a training set D;. and a validation set D . The objective is to generate a
network that yields high test performance on the target domain. To simplify notations, we assume the
dimension of an input x and that of a target variable y, which is a one-hot vector indicating the true
class label, are the same between the target and source datasets, while one can easily extend different
dimensionalities.

We propose Smooth Transfer Learning, which uses a specially-designed, learnable scheduler function
for the loss weights such that degrees of contributions from two datasets can be smoothly changed
along training time. The form of the scheduler function is designed with only a few learnable
parameters so that it can express either naive pre-training-then-fine-tuning or multi-task learning
with fixed weights; therefore, the proposed method is a generalization of these extreme cases. The
difficulty on optimizing such a scheduler lies in the asymmetry between the training objective for the
network (source and target) and the test objective (target). To address this asymmetry, we employ a
hyperparameter search to optimize the parameters of the scheduler function for the target domain.

The network architecture considered in this work has a domain-generic backbone gy (-) with a
parameter set § and two parallel domain-specific heads h;l:T (), his (+) with target-specific parameter

set ¢T and source-specific parameter set ¢°. The sample-wise loss functions are defined as

£3 g (@yy) = L (s(h5e(90(@)),), (2.9) € DE, (M
L5 gs(@y) =L (S(his (ga(w‘))%y) ,(z,y) € D®,)

where s(-) denotes the softmax function and L(-) denotes the cross-entropy loss function. The
mini-batch loss function is then defined as

Z £9¢Tacy |BS‘

(uy)eBT

Lo (BT, B%) =

> L)), 3)

(z,y)€BS

1.0 1.0 1.0 1.0

Zos Zos Zos Zos

0.0 0.0 0.0 0.0
0 T/2 T 0 T2 T 0 T/2 T 0 T/2 T
t t t t

@) |r] < 1,to=—03T b)|r|<1,tg=03T @7r>1l,a=-15 (d7>1a=15

Figure 1: Extreme cases of the scheduler function A\, (¢). (a,b) Pre-training-then-fine-tuning with
different switching timings. (c,d) Multi-task learning with different fixed weights.

Here, a mini-batch consists of a sub-batch B from the target dataset DY and a sub-batch B from
the source dataset DS. The set © consists of 6, T and ¢°. The degrees of contributions from two
sub-batches are controlled by the loss weight A\g € [0, 1], which we will extend to a function of
training time ¢ (in the units of iterations) as discussed below.

We define the scheduler function for the loss weight as the sigmoid function of the form

t—T/2—t -1
)]

T

a0 = |1 e (- @
where T is the total number of iterations and w = {¢o, 7, a} denotes a set of tunable scalars. Now,
we illustrate that this scheduler function can realize the following extreme cases.

Pre-training-then-fine-tuning: In the limit of 7 — 0 with a finite «,

- 0, t<T/2+t0
’\w(t){ 1, t>T/2+to ®)

In this extreme case, A, (t) essentially behaves as a step function that changes the value at T'/2 + .
In other words, the training process boils down to the conventional pre-training-then-fine-tuning,
where the transfer timing is controlled by ¢y, as illustrated in Fig. E] (a) and (b).

Multi-task learning with fixed weights: In the limit of 7 — oo with a finite £,
Ao(t) = (1 4e*)7, (6)

which is just a constant function, whose value is controlled by «. This tells that multi-task learning
with fixed weights can be expressed in this limit, as illustrated in Fig.[I](c) and (d).

It is worth mentioning about the parametrization of A, (¢). A sigmoid function is typically expressed
with two parameters of gain and offset. The reason why we introduced the third one is to characterize
each parameter to carry a specific meaning. Namely, the gain 7 is responsible for the maximum
slope, the gain-independent offset ¢y is responsible for the transfer timing, and the gain-dependent
offset « is responsible for the fixed weight. We could eliminate, say «, but it requires a very complex
parameter tuning for both 7 and t(such that g = o’7 — oo to express a constant function.

We use a hyperparameter search to optimize the scheduler parameters w for the validation dataset of
the target domain. With a trial w, we apply the following update rule or its variant to the parameter ©

FOI‘t:L"' ,TZ 9(—9—7’]%;6@7)\“)(,5)(3?,3?), 7

where B} and B} are uniformly sampled sub-batches from D; and DS, respectively. Temporal
model generation is repeated many times with different trials of w to search for the best w and ©
in terms of validation accuracy in the target domain. We employ Tree-structured Parzen Estimator
(TPE) [16] for the search. The gain 7 is searched in log domain, and other two offsets are searched in
linear domain so that parameter setting close to the two extreme cases can be sufficiently searched.

3 Evaluation

The experimental purpose is to compare the test performance of models trained by Smooth Transfer
Learning and simple baselines including pre-training-then-fine-tuning and multi-task learning with

Table 1: Test accuracies (%) on the target domain for different target dataset size N = |D|. Top
row is the case of N >~ |DS|. ‘Target’ means models trained only on target dataset DL. ‘Fine-tune’
means models produced by pre-training-then-fine-tuning. ‘Multi-task’ means models trained with the
target and source losses with fixed weights. ‘Ours’ means the proposed Smooth Transfer Learning.

[Target: CIFAR-10, Source: CIFAR-100] [Target: SVHN, Source: MNIST]

N | Target Fine-tune Multi-task Ours N | Target Fine-tune Multi-task Ours
45,000 91.9 88.7 90.3 92.2 65,931 95.8 95.3 96.1 96.0
14,230 87.0 85.3 87.0 89.1 20, 849 93.8 94.2 94.4 94.5

4,500 79.0 81.1 82.1 85.4 6,593 91.5 92.1 92.1 92.8
1,420 66.0 75.7 75.1 80.4 2,085 84.8 88.5 87.8 90.5
450 43.9 69.9 67.4 72.8 659 47.2 75.0 63.0 85.0
140 36.7 61.1 61.0 65.3 208 18.4 45.3 22.2 66.0
N = 45,000 N = 14,230 N = 4,500 N = 1,420 N = 450 N = 140
1.0 /_i. 1.0 j i 1.0 /r 1.0 /_—E 1.0 f:' 1.0 E
Zos 1| Zo0s 1205 I Zos 1| Zo0s 1| Z0s ’ 1
1] 1 1 1 1
1 1 1 1 1 1
0.0 | o0 1 oo ! 0.0 LI ! 0.0 !
N = 65,931 N = 20,849 N = 6,593 N = 2,085 N = 659 N = 208
1.0 : 1.0 r—:' 1.0 : 1.0 1.0 1.0 :
1 1 1 _ _ 'I — ’ !
£ 0.5 | m— | 0.5 1| Zo0s 1 Z05 Z05 1 Z05 1
} 1 1 I 1 1
1 1] | 1 1
0.0 ! 0.0 1 o0 ! 0.0 L 0.0 ! 0.0 !

0 78k 157k 0 78k 157k 0 78k 157k 0 78k 157k 0 78k 157k 0 78k 157k
t t t t t

t

Figure 2: The semi-optimal scheduler functions A, (¢) obtained for the object classification task (top)
and for the digit classification task (bottom). The dashed blue lines indicate the early-stopped timings.
Roughly speaking, the scheduler approaches pre-training-then-fine-tuning (multi-task learning with
fixed weights) when N is small (large).

fixed weights. We are also interested in how a semi-optimal scheduler behaves for | DL| < |D®| and
|DE| ~ | DS|. In the former case where the target dataset is much smaller than the source dataset, we
expect that it approaches pre-training-then-fine-tuning behavior, since fine-tuning has been found to
be beneficial for this case. In the latter case, the maximum slope would be much more moderate.

We conducted two sets of experiments. One is for object classification using CIFAR-10 [[13] as the
target dataset and CIFAR-100 [[13] as the source dataset. The other is for digit classification using
SVHN [14] as the target and MNIST [15] as the source. Training details are given in Appendix.

Quantitative results for generalization abilities are summarized in Table[I] Recalling that the proposed
method is a generalization of the baselines and the hyperparameter search yields semi-optimal
hyperparameters for the validation set, it is no surprise that ours outperforms the baselines. One can
observe that ‘Fine-tuning’ (‘Multi-task’) tends to perform better than ‘Multi-task’ (‘Fine-tune’) when
the target dataset size is much smaller than (similar to) the source dataset size. When the target dataset
size is relatively small, having many iterations with the target samples would easily cause overfitting.
Thus, switching the datasets in the middle of the training would be a better strategy than to keep
using the target samples from the beginning with a fixed loss weight. In contrast, when the target
dataset is as large as the source dataset, target samples can be trained longer without experiencing
overfitting. Dataset switching would not be ideal in this case because forgetting of the source dataset
likely happens.

Obtained scheduler functions are shown in Fig.[2] Although the number of trials by TPE is not large
enough in these preliminary experimentsﬂ to yield truly the best validation performance, we still
observe following tendencies. Roughly speaking, the semi-optimal scheduler approaches pre-training-
then-fine-tuning (multi-task learning with fixed weights) when the target dataset size is much smaller
than (similar to) the source dataset size. In the object classification task with non-extreme N (say
N = 1,420), the transition is quite smooth; A\, (¢) changes from a value ~ 0 to a value ~ 1 slowly
over the entire period of training.

’The average number of replacing the best performing parameter set w by TPE was 5.8.

4 Conclusion

We proposed Smooth Transfer Learning, which uses a learnable scheduler function for the loss weight.
The scheduler function is designed to generalize the pre-training-then-fine-tuning and multi-task
learning with fixed weights. We confirmed that our method outperforms these special cases in image
classification tasks. Obtained scheduler functions nearly behave as the pre-training-then-fine-tuning
(multi-task learning with fixed weights) when the target dataset size is much smaller than (similar to)
the source dataset size.

Acknowledgements. This work is an outcome of a research project, Development of Quality
Foundation for Machine-Learning Applications, supported by DENSO IT LAB Recognition and
Learning Algorithm Collaborative Research Chair (Tokyo Tech.).

References

[1] Sinno Jialin Pan and Qiang Yang. A Survey on Transfer Learning. /EEE Transactions on knowledge and
data engineering, 22(10):1345-1359, 2010.

[2] Karl Weiss, Taghi M. Khoshgoftaar, and Ding Ding Wang. A survey of transfer learning. Journal of Big
Data, 3(9), 2016.

[3] Chuangi Tan, Fuchun Sun, Tao Kong, Wenchang Zhang, Chao Yang, and Chunfang Liu. A survey on deep
transfer learning. In International Conference on Artificial Neural Networks (ICANN), 2018.

[4] Fuzhen Zhuang, Zhiyuan Qi, Keyu Duan, Dongbo Xi, Yongchun Zhu, Hengshu Zhu, Hui Xiong, and Qing
He. A Comprehensive Survey on Transfer Learning. Proceedings of the IEEE, 109(1):43-76, 2021.

[5] Kaiming He, Ross Girshick, and Piotr Dollar. Rethinking imageNet pre-training. Proceedings of the IEEE
International Conference on Computer Vision, 2019-October(i):4917-4926, 2019.

[6] Wen Zhang, Lingfei Deng, and Dongrui Wu. Overcoming negative transfer: A survey. CoRR,
abs/2009.00909, 2020.

[7] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang,
Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-Fei. ImageNet Large
Scale Visual Recognition Challenge. International Journal of Computer Vision (IJCV), 115(3):211-252,
2015.

[8] Linfeng Zhang, Muzhou Yu, Tong Chen, Zuoqgiang Shi, Chenglong Bao, and Kaisheng Ma. Auxiliary
training: Towards accurate and robust models. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), June 2020.

[9] Iasonas Kokkinos. Ubernet: Training a universal convolutional neural network for low-, mid-, and high-
level vision using diverse datasets and limited memory. In 2017 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pages 5454-5463, 2017.

[10] Alex Kendall, Yarin Gal, and Roberto Cipolla. Multi-task learning using uncertainty to weigh losses for
scene geometry and semantics. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2018.

[11] Zhao Chen, Vijay Badrinarayanan, Chen-Yu Lee, and Andrew Rabinovich. Gradnorm: Gradient normal-
ization for adaptive loss balancing in deep multitask networks. In International Conference on Machine
Learning, pages 794-803. PMLR, 2018.

[12] Tong Yu and Hong Zhu. Hyper-parameter optimization: A review of algorithms and applications. CoRR,
abs/2003.05689, 2020.

[13] Alex Krizhevsky. Learning multiple layers of features from tiny images. University of Toronto, Technical
Report, 2009.

[14] Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y Ng. Reading digits in
natural images with unsupervised feature learning. In NIPS Workshop on Deep Learning and Unsupervised
Feature Learning, 2011.

[15] Yann LeCun, Corinna Cortes, and Christopher JC Burges. The mnist database of handwritten digits, 1998.

[16] James Bergstra, Rémi Bardenet, Yoshua Bengio, and Baldzs Kégl. Algorithms for hyper-parameter
optimization. In Advances in Neural Information Processing Systems, volume 24, 2011.

[17] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition.
In IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2016.

[18] Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. In The British Machine Vision
Conference, 2016.

A Training details

A.1 Training details specific to the object classification task

We use ResNet20 [[17] architecture in all experiments of the object classification task.

Among the target CIFAR-10 samples, we randomly split 50,000 default training samples into 45,000 training
samples and 5,000 validation samples. From the 45,000 training samples, we further construct partial datasets of
different sizes N by random sampling to examine how performance differs for different training dataset sizes.

We use the same sub-batch size 128 for the source and target in the multi-task learning and Smooth Transfer
Learning. Other than those, we use the mini-batch size of 128, except for the single dataset training with
N = 140 and the fine-tuning with N = 140, where the mini-batch size 16 is used.

‘We run the single dataset training and the source dataset training in the conventional transfer learning for 200
epochs. Duration of the multi-task learning and that of Smooth Transfer Learning is 380 epochs with respect to
the source dataset.

The learning rate is scheduled by the cosine annealing rule. The peak and final learning rates are 0.1 and le-3,
respectively. Weight decay rate is 1e-4. We do not use dropout in the ResNet20.

We used batch normalization in all experiments of the object classification task. In the multi-task learning and
Smooth Transfer Learning, batch statistics are shared between the source and target datasets.

TPE setting is as follows. We use 11 workers that run in parallel. Each worker is responsible for training one
model at a time. We repeat the parallel training 9 times, and at each time a worker generates a trial parameter set
w which stems from the one that performs best so far on the validation dataset.

A.2 Training details specific to the digit classification task

We use WideResNet-10-2 [18] architecture in all experiments of the digit classification task.

Among the target SVHN samples, we split 73,257 default training samples into 65,931 training samples (90%)
and 7,326 validation samples (10%). From the 65,931 training samples, we further construct partial datasets of
different sizes N by random sampling to examine how performance differs for different training dataset sizes.

We use the same sub-batch size 128 for the source and target in the multi-task learning and Smooth Transfer
Learning. Other than those, we use the mini-batch size of 128.

We run the single dataset training and the source dataset training in the conventional transfer learning for 160
epochs. Duration of the multi-task learning and that of Smooth Transfer Learning is 336 epochs with respect to
the source dataset.

The learning rate is scheduled by the cosine annealing rule. The peak and final learning rates are le-2 and le-4,
respectively. Weight decay rate is Se-4. Dropout ratio used in the WideResNet-10-2 is 0.4.

We used batch normalization in all experiments of the digit classification task. In the multi-task learning and
Smooth Transfer Learning, dataset-specific batch statistics are used; i.e., the source and target datasets have
different sets of batch statistics. We checked that use of shared batch statistics brings noticeable drops in test
accuracies.

As for TPE, we used 9 workers which sequentially train models 11 times.

A.3 Training details common in all experiments

We adopt cosine annealing for learning rate scheduling. Linear warmup is adopted in the beginning part of
training for a period of 2.5% of total duration. We used momentum SGD with momentum rate of 0.9.

Early stopping is applied on each experiment. Model parameters are saved as certain intervals during total
training epochs mentioned above and a model that yields best validation accuracy is tested.

	Introduction
	Smooth Transfer Learning
	Evaluation
	Conclusion
	Training details
	Training details specific to the object classification task
	Training details specific to the digit classification task
	Training details common in all experiments

