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Learning Compact DNNs for Driving Scene Recognition

Obtaining a lightweight and well-preforming recognition model
for autonomous driving (e.g., segmentation, detection)

The trained model sometimes does not reach the desired performance

1. Not enough model capacity → Need to change the architecture
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Learning Compact DNNs for Driving Scene Recognition

Obtaining a lightweight and well-preforming recognition model
for autonomous driving (e.g., segmentation, detection)

The trained model sometimes does not reach the desired performance

1. Not enough model capacity → Need to change the architecture
2. Enough model capacity, but not optimized sufficiently
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Compact models are often harder to generalize than large models, 
even though they may have the capacity to represent solutions of the large models
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Method to exploit full generalization power of compact models︖
→ Knowledge Distillaion
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Knowledge Distillation as Function Matching

Recent study showed critical components of distillation to improve performance [1]︓
1. Consistency of teacherʼs and studentʼs inputs
2. Distilling on a wide range of data points for large number of epochs
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[1] L Beyer et al., “Knowledge Distillation: A Good Teacher Is Patient and Consistent.” CVPR2022.

→ Imitating teacher as a function is critical（function matching）
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Compact models are hard to generalize
when directly learned from labels

Imitating the large model on a large 
number of points yields generalization

Learning directly from labels Function Matching

Function Matching on Driving Scene Recognition

Compact model

Large model

: Labeled data : Unlabeled data

Generally, we can access an almost infinite amount of (unlabeled) driving scene data

How effective is using large amounts of unlabeled scene data for distillation?
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Experiments
Evaluation on semantic segmentation (SS) and object detection (OD) in BDD100K

Datasets SS Labeled: 10,000 images
OD Labeled: 100,000 images
Unlabeled: 16,000,000 images (clipped from original videos)

Learning Methods
① Train the compact model directly from the labeled dataset (Supervised) 

② Train the large model from the labeled dataset 
→ Distill it to the compact model with the labeled dataset (Distill) 

③ Train the large model from the labeled dataset 
→ Distill it to the compact model with the unlabeled dataset (FunMatch) 
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Results（Semantic Segmentation）

Model Large: PSPNet with ResNet-101 backbone  
Compact: PSPNet with ResNet-18 backbone    

Results
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Method Training Data mIoU
Large (teacher) Supervised Labeled (70K) 64.83
Compact ① Supervised Labeled (70K) 61.48
Compact ② Distill Labeled (70K枚) 61.70
Compact ③ FunMatch Labeled (70K) + Unlabeled (16M) 64.74

(picked the best performing model among all training schedules)

The peformance of the compact model is improved dramatically 
by function matching with a large number of unlabeled data
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Results（Object Detection）

Model Large: FCOS with ResNet-101 + FPN backbone
Compact: FCOS with ResNet-18 + FPN backbone

Results
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Method Training Data mAP
Large (teacher) Supervised Labeled (70K) 31.4 
Compact ① Supervised Labeled (70K) 29.5
Compact ② Distill Labeled (70K枚) 30.4
Compact ③ FunMatch Labeled (70K) + Unlabeled (16M) 31.2

The peformance of the compact model is improved dramatically 
by function matching with a large number of unlabeled data

(picked the best performing model among all training schedules)
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Results（Agreement with teacher）
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Use of unlabeled data and longer training yields better agreement with teacher,
resulting in better performance

Performance w.r.t. ground truth Agreement with teacher

FunMatch

FunMatch




